|Table of Contents|

Analysis on pre-cooling filling pipeline of cryogenic fluid base on quasi-one-dimensional model (PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年02期
Page:
83-93
Research Field:
目次
Publishing date:

Info

Title:
Analysis on pre-cooling filling pipeline of cryogenic fluid base on quasi-one-dimensional model
Author(s):
REN Xiaowen1 ZHOU Chenchu1 CHEN Hongyu2 LI Ping2 LIU Yazhou1
(1.Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China; 2.Academy of Aerospace Propulsion Technology, Xi'an 710100, China)
Keywords:
one-dimensional lumped parameter cryogenic pre-cooling filling
PACS:
V421.42
DOI:
-
Abstract:
Simulation on the dynamic characteristic of cryogenic fluid pre-cooling pipelines can provide an important reference for the development of cryogenic engine starting scheme.In order to obtain the main characteristics of cryogenic fluid pre-cooling filling, a quasi-one-dimensional model with the finite volume method is established.In this model, the energy equation and the filling rate convection equation are subjected to a spatial one-dimensional solution, while the mass equation and the momentum equation are solved by the lumped parameter method.Then the main influencing factors are analyzed.The study on the influence of different initial temperatures of the pipe wall shows that with the increase of the initial temperature, the pre-cooling time of liquid oxygen on the pipeline gradually increases, the steam pressure build-up time decreases, and the peak of gas pressure increases gradually.Due to the buffering effect of gas, the filling water hammer pressure decreases gradually when the liquid oxygen with low gas content fills the pipeline.The simulation results of liquid oxygen, liquid methane and liquid nitrogen pre-cooling pipelines show that under the same steady-state flow rate, the pre-cooling speed of liquid oxygen is faster, followed by the liquid methane, and then the liquid nitrogen.

References:

[1] 李平.中国载人航天推进技术发展设想[J].火箭推进,2011,37(2):1-7.
LI P.Development of propulsion technology for Chinese manned launch vehicles[J].Journal of Rocket Propulsion,2011,37(2):1-7.
[2] 李文龙,李平,邹宇.烃类推进剂航天动力技术进展与展望未来[J].宇航学报,2015,36(3):243-252.
[3] HURLBERT E A,UENO H,ALEXANDER L,et al.International space exploration coordination group assessment of technology gaps for LOx/methane propulsion systems for the global exploration roadmap[C]//AIAA SPACE 2016.Reston,Virginia:AIAA,2016.
[4] BATTISTA F,SALVATORE V,RICCI D.New achievements in the hyprob-bread LOX/LCH4 demonstrator development[C]//67th International Astronautical Congress.Guadalajara:[s.n.],2016.
[5] REN X W,CHEN H Y,LI P,et al.Numerical simulation of filling process of cryogenic propellants with inert gas purge[J].Thermal Science and Engineering Progress,2022,29:101197.
[6] 李永兵,匡波,张中伟,等.低温推进剂输送系统循环预冷非稳态数值模拟研究[J].低温工程,2009(1):36-45.
[7] 王娇娇,陈虹,厉彦忠,等.低温管路预冷过程两相流动与换热计算研究[J].西安交通大学学报,2019,53(1):93-99.
[8] DARR S R,HU H,SHAEFFER R,et al.Numerical simulation of the liquid nitrogen chilldown of a vertical tube[C]//53rd AIAA Aerospace Sciences Meeting.Reston,Virginia:AIAA,2015.
[9] 程谋森,刘昆,张育林.低温推进剂供应管路预冷充填瞬变流计算[J].推进技术,2000,21(5):38-41.
[10] 刘昆,程谋森,张育林.低温推进剂供应管道系统充填过程的动力学模型[J].国防科技大学学报,2003,25(3):1-5.
[11] LECLAIR A,MAJUMDAR A.Computational model of the chilldown and propellant loading of the space shuttle external tank[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virigina:AIAA,2010.
[12] DEROSA M,STEELANT J,MORAL J,et al.ESPSS:European space propulsion system simulation[M].Heraklion:International Symposium on Propulsion for Space Transportation,2008.
[13] SOLLER S,CLARAMUNT K,PEVERONI L,et al.Experimental and numerical investigation of cryogenic two-phase flows and application to liquid rocket propulsion systems[EB/OL].https://www.semanticscholar.org/paper/Experimental-and-Numerical-Investigation-of-Flows-Soller-Claramunt/044fc22e1b8bb17c956b7b3e106c48bd 28514e5c,2018.
[14] IANNETTI A,GIRARD N,RAVIER N,et al.PROMETHEUS,a low cost LOX/CH4 engine prototype[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2017.
[15] IANNETTI A,GIRARD N.PROMETHEUS A.LOX/LCH4 reusable rocket engine[C]//7th European Conference for Aeronautics and Space Sciences.[S.l.]:[s.n.],2017.
[16] VILA J,MORAL J,FERNÁNDEZ-VILLACÉ V,et al.An overview of the ESPSS libraries:Latest developments and future[EB/OL].https://www.semanticscholar.org/paper/An-Overview-of-the-ESPSS-Libraries3A-Latest-and-Vila-Moral/bbe110ad353ea974d8e8aa7f171b262ef0e59107,2018.
[17] PINNA F,LEONARDI M,NASUTI F,et al.Implementation of a two-phase pipe component inside the ESPSS library[EB/OL].https://www.researchgate.net/publication/325205734_Implementation_of_a_Two-Phase_Pipe_Component_inside_the_ESPSS_Library,2018.
[18] 薛科,张黎辉,苏龙斐,等.卫星推进系统真空充填过程数值仿真[J].航空动力学报,2007,22(2):323-326.
[19] REN X W, LI P, CHEN H Y. Numerical simulation of water hammer in liquid methane feedline based on two compressible fluid models[J].Cryogenics,2020,109:103122.
[20] 任孝文,陈宏玉,李平,等.弱可压缩流体与可压缩流体模型的管路水击研究[J].推进技术,2020,41(8):1880-1886.
[21] 任孝文,李平,陈宏玉,等.预存气体闭端管路的充填水击研究[J].推进技术,2020,41(12):2700-2708.
[22] 周晨初,李舒欣,陈宏玉,等.液体火箭发动机关机水击特性仿真[J].火箭推进,2021,47(1):70-75.
ZHOU C C,LI S X,CHEN H Y,et al.Simulation on water hammer during liquid rocket engine shutdown[J].Journal of Rocket Propulsion,2021,47(1):70-75.
[23] 赵建军,丁建完,周凡利,等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报,2006,18(S2):570-573.
[24] 陈宏玉,刘红军,陈建华.补燃循环发动机强迫起动过程[J].航空动力学报,2015,30(12):3010-3016.
[25] 王娇娇,厉彦忠,王鑫宝,等.低温推进剂管路预冷沸腾换热特性研究综述[J].宇航学报,2017,38(8):779-788.
[26] PETZOLD L R.Description of DASSL:A differential/algebraic system solver[R].SAND82-8637.
[27] VERSTEEG H K,MALALASEKERA W.An introduction to computational fluid dynamics:The finite volume method[M].2nd ed.Harlow,England:Pearson Education Ltd,2007.
[28] JIN L,LEE J,JEONG S.Investigation on heat transfer in line chill-down process with various cryogenic fluids[J].International Journal of Heat and Mass Transfer,2020,150:119204.

Memo

Memo:
-
Last Update: 1900-01-01