|Table of Contents|

Identification of attenuation coefficient for thermoacoustic oscillation in combustion chamber based on variational mode decomposition(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年05期
Page:
23-31
Research Field:
目次
Publishing date:

Info

Title:
Identification of attenuation coefficient for thermoacoustic oscillation in combustion chamber based on variational mode decomposition
Author(s):
FAN Zhiwei ZHONG Zhan LI Geng NIE Wansheng HE Bo
(Department of Aerospace Science and Technology, Aerospace Engineering University, Beijing 101400, China)
Keywords:
combustion stability attenuation coefficient system identification resonant frequency filter width variational mode decomposition
PACS:
V231.1
DOI:
-
Abstract:
Based on the pressure oscillation signal of the stable combustion stage of the liquid rocket engine combustion chamber, extracting the thermoacoustic resonant mode frequency and its amplitude, and establishing the theoretical model of thermoacoustic oscillation of different complexity to identify and obtain the attenuation coefficients of each mode, is an important means to evaluate the combustion stability margin of the combustion chamber in current experiments. A theoretical model of thermoacoustic oscillation with a second-order stochastic oscillator is established, and the thermoacoustic resonant mode of the pressure oscillation signal is extracted by the steep maximum variational mode decomposition algorithm, and then the mode extraction algorithm and the time/frequency domain identification method are verified. In addition, it is applied to the combustion stability margin evaluation and analysis of a needle-bolt gas oxygen/ethanol model engine. The results show that compared with the traditional bandpass filtering algorithm,the steep maximum variational mode algorithm effectively improves the extraction accuracy and convenience of thermoacoustic resonant mode.

References:

[1] POINSOT T.Prediction and control of combustion instabilities in real engines[J].Proceedings of the Combustion Institute,2017,36(1):1-28.
[2] 杨 V,安德松 W E.液体火箭发动机燃烧不稳定性[M].张宝炯,译.北京:科学出版社,2001.
[3] REARDON F H.Guidelines for combustion stability specifications and verification procedures for liquid propellant rocket engines[EB/OL].https://www.researchgate.net/publication/24372969_Guidelines_for_combustion_stability_specifications_and_verification.procedures_for_liquid_propellant_rocket_engines,1973.
[4] 张蒙正.燃烧不稳定性模拟实验技术[M].西安:西北工业大学出版社,2017.
[5] 丁兆波,许晓勇,乔桂玉,等.氢氧火箭发动机动态燃烧稳定性评定技术研究[J].导弹与航天运载技术,2013(1):38-41.
[6] BONCIOLINI G.Modelling of thermoacoustic dynamics in gas turbines applications[Z].2019.
[7] LIEUWEN T.Online combustor stability margin assessment using dynamic pressure data[J].Journal of Engineering for Gas Turbines and Power,2005,127(3):478-482.
[8] STADLMAIR N V,HUMMEL T,SATTELMAYER T.Thermoacoustic damping rate determination from combustion noise using Bayesian statistics[EB/OL].https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2017/50848/V04AT04A025/243077,2017.
[9] YI T X,GUTMARK E J.Online prediction of the onset of combustion instability based on the computation of damping ratios[J].Journal of Sound and Vibration,2008,310(1/2):442-447.
[10] NOIRAY N,SCHUERMANS B.Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors[J].International Journal of Non-Linear Mechanics,2013,50:152-163.
[11] NOIRAY N.Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in turbulent combustors[J].Journal of Engineering for Gas Turbines and Power,2017,139(4):041503.
[12] BOUJO E,NOIRAY N.Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2017,473(2200):20160894.
[13] BONCIOLINI G,BOUJO E,NOIRAY N.Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator:Thermoacoustic instabilities as an example[J].Physical Review E,2017,95(6):062217.
[14] 杨尚荣,周晨初,王牧昕.同轴离心式喷嘴燃烧稳定性裕度评估[J].推进技术,2022,43(1):224-230.
[15] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
[16] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
[17] SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
[18] 吴文轩,王志坚,张纪平,等.基于峭度的VMD分解中k值的确定方法研究[J].机械传动,2018,42(8):153-157.
[19] 刘倩,李敬轩,孙纪国,等.高压氢氧火箭发动机推力室燃烧稳定性分析[J].火箭推进,2022,48(2):66-75.
LIU Q,LI J X,SUN J G,et al.Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine[J].Journal of Rocket Propulsion,2022,48(2):66-75.
[20] 刘红珍,田原.某液体火箭发动机燃气路异常压力脉动分析[J].火箭推进,2022,48(5):69-75.
LIU H Z,TIAN Y.Study on abnormal pressure pulsation of gas path in a liquid rocket engine[J].Journal of Rocket Propulsion,2022,48(5):69-75.

Memo

Memo:
-
Last Update: 1900-01-01