|Table of Contents|

Analysis of digital variable frequency control ignition exciter(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年05期
Page:
91-98
Research Field:
目次
Publishing date:

Info

Title:
Analysis of digital variable frequency control ignition exciter
Author(s):
YAN Dongdong12 XIAO Jun1 ZHAO Jun2 FENG Jianchang2
(1.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; 2.Tianjin Aviation Electro-Mechanical Co.,Ltd., Tianjin 300308, China)
Keywords:
engine ignition ignition exciter digital variable frequency discharge control reliability of ignition
PACS:
V434
DOI:
-
Abstract:
To solve the problem of difficult ignition and easy flameout of the engine in harsh environment, we developed a digital variable frequency solid-state ignition exciter by using digital circuit to control the discharge frequency and solid-state switch to control the discharge output. This ignition exciter is capable of stable output in a wide voltage range of 10-30 V DC, with discharge frequency of 6 Hz at starting and automatically changing to 1 Hz after starting. It has extended discharge spark duration and longer continuous operation. The ignition exciter developed is the first digital ignition exciter with variable frequency continuous ignition capability that has been successfully installed and applied in China. After its application, the number of failures, the percentage of failed products and the failure rate are all 0, which are significantly lower than the existing ignition exciters. The practical application has shown that the ignition exciter can meet the high reliable ignition requirement under complex climate environment such as ground start, air start and plateau start.

References:

[1] 蒋志扬.航空发动机电点火原理[M].北京:国防工业出版社,1959.
[2] 王煜锟,王玫,张锋,等.气氧/气甲烷火炬点火器设计及试验[J].火箭推进,2022,48(3):57-62.
WANG Y K,WANG M,ZHANG F,et al.Design and experimental study of gas oxygen/methane torch igniter[J].Journal of Rocket Propulsion,2022,48(3):57-62.
[3] 刘昌国,陈锐达,刘犇,等.小推力空间液体火箭发动机夹气启动特性[J].火箭推进,2021,47(3):8-15.
LIU C G,CHEN R D,LIU B,et al.Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J].Journal of Rocket Propulsion,2021,47(3):8-15.
[4] JANKOWIAK A,BLANCHART P.Electrical behaviour of ceramic composite materials for aero-engine igniters[J].Aerospace Science and Technology,2006,10(3):207-216.
[5] GLIDDEN S C,SANDERS H D.Solid state spark gap replacement switches[C]//27th International Power Modulator Symposium.New York:IEEE,2007.
[6] 吴恩会,陈新.应用于航空发动机直流高能点火装置的RCC变换器研究[J].电子测量与仪器学报,2008,22(S2):305-308.
[7] 边靖洲,车延博,冯宝国.一种航空发动机稳频高能点火器[J].应用科技,2015,42(5):14-18.
[8] 赵军,张涛,粟建新,等.航空发动机点火系统改进设计[J].现代电子技术,2013,36(4):102-106.
[9] 李奕新,谭航,杨水银.航空发动机电点火系统现状与发展趋势[J].燃气涡轮试验与研究,2015,28(6):49-54.
[10] 刘正艺,陈溯敏,周孙宇.航空发动机燃烧室点火研究概述[J].燃气涡轮试验与研究,2021,34(6):51-55.
[11] 王兆安,刘进军.电力电子技术[M].5版.北京:机械工业出版社,2009.
[12] 龙轶,高红星,唐军.基于功率MOSFET管的RCC变换器研究[J].船电技术,2007,27(6):351-353.
[13] ERICKSON R W,MAKSIMOVIC D.Fundamentals of power electronics[M].2nd ed.New York:Springer,2013.
[14] RASHID M H,RASHID M H.Power electronics handbook[M].3rd ed.Burlington:Butterworth-Heinemann,2011.
[15] LEUCHTER J,STEKLY V,BLASCH E.Investigation of avionics power switch loading versus aircraft electromagnetic compatibility[J].IEEE Aerospace and Electronic Systems Magazine,2015,30(9):24-34.
[16] 方荣宝.航空发动机用晶体管高能点火装置的计算[R].北京:中国航空科技报告管理办公室,1983.
[17] GRAY P R,HURST P J,LEWIS S H,et al.Analysis and design of analog integrated circuits[M].New York:John Wiley & Sons Inc,2009.
[18] NELSON V P,NAGLE H T.Digital logic circuit analysis and design[M].Englewood Cliffs,NJ:Prentice Hall,1995.
[19] 中国人民解放军总装备部.军用环境试验方法:GJB 150.1A[S].北京:总装备部军标出版发行部,2009.
[20] 国防科技工业局.航空燃气涡轮发动机点火系统电嘴火花能量试验方法:HB 20274[S].北京:中国航空综合技术研究所,2016.
[21] 王俊琦,汪涛.某型辅助动力装置启动失败故障分析[J].工程与试验,2020,60(2):50-52.
[22] 天津航空机电有限公司.变频放电连续输出点火技术研究应用证明[R].天津:天津航空机电有限公司,2018.

Memo

Memo:
-
Last Update: 1900-01-01