|Table of Contents|

Nonlinear modal simulation of solenoid valve coil looseness using power spectrum method(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年06期
Page:
31-37
Research Field:
目次
Publishing date:

Info

Title:
Nonlinear modal simulation of solenoid valve coil looseness using power spectrum method
Author(s):
LIAO Yunlong12 WU Peipei12 YOU Gang12
1.Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2.Shanghai Engineering Center of Space Engine, Shanghai 201112, China
Keywords:
nonlinear mode power spectral density random vibration transient dynamics
PACS:
V434
DOI:
-
Abstract:
A nonlinear modal simulation method that combines time-domain transient dynamics simulation with frequency-domain power spectrum analysis was proposed.The simulation process is as follows: first, the periodogram method and probability statistics are used to simulate the random test conditions in the time domain.Combine and verify, obtain the fitting time domain conditions and prove the effectiveness, then use them as input conditions to conduct the transient dynamics simulation of the valve structure, perform the power spectrum conversion on the time domain acceleration result curve, and finally obtain the structural nonlinear modal frequency through the power spectrum analysis. Different from the traditional linear eigenvalue modal simulation principle, the nonlinear modal simulation method completes the nonlinear modal analysis through multiple processes of frequency domain power spectrum conditions-time domain fitting-time domain simulation-frequency domain analysis.The nonlinear effects of contact are introduced in the time domain simulation step.The thread loosening model ofa certain solenoid valve coiluses conservative boundaries for linear modal simulation, and the deviation between simulation results and experimental results is8.96.After the friction coefficient calibration, the nonlinear modal frequency simulation results and experimental deviation considering the nonlinear influence of contact are 0.69.The result is better than linear simulation results.

References:

[1] ROSENBERG R M.Normal modes of nonlinear dual-mode systems[J].Journal of Applied Mechanics,1960,27(2):263-268.
[2] ROSENBERG R M.On normal vibrations of a general class of nonlinear dual-mode systems[J].Journal of Applied Mechanics,1961,28(3):275-283.
[3] SHAW S W,PIERRE C.Normal modes for non-linear vibratory systems[J].Journal of Sound and Vibration,1993,164(1):85-124.
[4] SHAW S W,PIERRE C.Normal modes of vibration for non-linear continuous systems[J].Journal of Sound and Vibration,1994,169(3):319-347.
[5] 刘鍊生,霍拳忠,黄克累.非线性振动系统主振型的一种求解方法及稳定性判定[J].应用数学和力学,1987,8(6):505-512.
[6] 刘鍊生,黄克累.一种用于非线性振动系统的模态分析方法[J].力学学报,1988,20(1):41-48.
[7] 李诚,李鸿光.采用谱单元Galerkin法求解非线性模态[J].噪声与振动控制,2022,42(4):25-31.
[8] 胡晓君.非线性随机结构自由振动的数值分析[J].建材世界,2019,40(2):61-63.
[9] 代鹏,王尚民,张天平,等.脉冲等离子体推进系统模态分析和试验验证[J].计算机辅助工程,2019,28(2):15-18.
[10] 杜大华,黄道琼,黄金平,等.火箭发动机涡轮盘模态影响因素与振动安全性分析[J].火箭推进,2021,47(1):21-28.
DU D H,HUANG D Q,HUANG J P,et al.Analysis on modal influence factors and vibration safety of rocket engine turbine disk[J].Journal of Rocket Propulsion,2021,47(1):21-28.
[11] 田彤辉,袁杰红,王青文,等.冲击荷载下级间螺栓法兰连接结构失效实验与数值仿真研究[J].振动与冲击,2019,38(18):40-45.
[12] GRACE O D.Instantaneous power spectra[J].The Journal of the Acoustical Society of America,1981,69(1):191-198.
[13] 张洁,陈春俊,林建辉.机械变速过程的瞬时参数与频谱分析[J].西南交通大学学报,2005,40(5):645-648.
[14] 王豪,蓝鲲,夏国江,等.一种随机激励下时变结构工作模态辨识方法[J].噪声与振动控制,2023,43(1):128-134.
[15] 王晓敏,冯进钤,陈越超.白噪声激励下非线性声学超材料的随机响应[J].力学与实践,2021,43(6):887-895.
[16] 许文峰,唐斌,BRENNAN MICHAEL J.具有非线性刚度边界的杆梁结构的动态特性分析[J].振动与冲击,2022,41(14):158-232.
[17] 聂肇坤,李刚,曾岩,等.考虑舱段连接结构非线性的运载火箭动力学建模[J].固体火箭技术,2021,44(1):118-125.
[18] 乐晨,徐卫秀,杨帆,等.运载火箭大直径螺栓承受拉弯耦合载荷失效判据研究[J].导弹与航天运载技术,2021(1):18-23.
[19] BOX G E P,MULLER M E.A note on the generation of random normal deviates[J].The Annals of Mathematical Statistics,1958,29(2):610-611.

Memo

Memo:
-
Last Update: 1900-01-01