[1] 张晓东, 刘昶, 朱亮聪, 等. 垂直起降重复使用液氧甲烷运载火箭发展路线探讨[J]. 空天技术, 2022(3): 71-79.
ZHANG X D, LIU C, ZHU L C, et al. Discussion on the development path of vertical take-off and vertical landing reusable liquid oxygen methane rocket[J]. Aerospace Technology, 2022(3): 71-79.
[2]MEISL C J. Life-cycle-cost considerations for launch vehicle liquid propellant rocket engine[J]. Journal of Propulsion and Power, 1988, 4(2): 118-126.
[3]MACGREGOR C A. Reusable rocket engine maintenance study[R]. NASA-CR-165569,1982.
[4]RACHUK V, GONCHAROV N,MARTINYENKO Y Evolution of the RD-0120 for future launch systems[C]//32nd AIAA,ASME,SAE, and ASEE, Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA,1996.
[5]RUDIS M, ORLOV V, RACHUCK V, et al. A universal methodology for predicting liquid rocket engine durability based on Russian RD-0120 engine operating experience[C]//31st Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1995.
[6]RACHUK V, GONCHAROV N, MARTYNENKO Y, et al. Design, development, and history of the oxygen/hydrogen engine RD-0120[C]//31st Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1995.
[7]LIMERICK C. Kistler K-1 vehicle propulsion development status[C]// 35th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1999.
[8]ANISIMOV V, LACEFIELD T, ANDREWS J, et al. Evolution of the NK-33 and NK-43 reusable LOX/kerosene engines[C]//33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1997.
[9]杨青格, 林倩, 吴小宁. 俄罗斯可重复使用火箭最新发展[J]. 中国航天, 2022(6): 53-57.
YANG Q G, LIN Q, WU X N. The latest development of Russian reusable rockets[J]. Aerospace China, 2022(6): 53-57.
[10]WANG Z G, WANG Y, ZHANG J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology, 2014, 39: 31-39.
[11]陈操斌, 牛军. 可重复使用宽域高速飞行器低速段动力方案分析与选型[J]. 空气动力学学报, 2022, 40(1): 149-164.
CHEN C B, NIU J. Analysis and selection of engine schemes for reusable wide-range high-speed aircraft in the low-speed phase[J]. Acta Aerodynamica Sinica, 2022, 40(1): 149-164.
[12]SIMONTACCHI P, BMASI R, EDELINE E, et al. Prometheus: precursor of new low-cost rocket engine family[C]// 8th European Conference for Aeronautics and Space Sciences. Madrid, Spain:[s.n.],2019.
[13]席欢. 欧空局继续推进低成本可重复使用的火箭发动机[J]. 全球定位系统, 2020, 45(3): 82.
XI H. ESA continues to promote low-cost reusable rocket engines[J]. GNSS World of China, 2020, 45(3): 82.
[14]张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 4-15.
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 4-15.
[15]鲍丙亮, 王军杰, 钟明磊. 梅林和猛禽液体火箭发动机技术研究与启示[C]// 空天动力联合会议论文集.南京:[s.n.],2020.
[16]张雪松. 猎鹰火箭的基础: 不断升级的梅林发动机[J]. 卫星与网络, 2017(6): 40- 41.
ZHANG X S. The foundation of Falcon rocket: the ever-upgrading Merlin engine[J]. Satellite & Network, 2017(6): 40- 41.
[17]KUMAR A, BHOWMIK R. A review on design features of the Falcon-9 space launch vehicle[J]. International Research Journal of Modernization in Engineering Technology and Science, 2021, 3(9): 575-584.
[18]GONCHAROV N, ORLOV V, RACHUK V, et al. Reusable launch vehicle propulsion based on the RD-0120 engine[C]//31st Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1995.
[19]余梦伦. 两级入轨重复使用运载器的方案探讨[J]. 装备指挥技术学院学报, 2006, 17(1): 1-5.
YU M L. A study of the two-stage-to-orbit reusable launch vehicle scheme[J]. Journal of the Academy of Equipment Command & Technology, 2006, 17(1): 1-5.
[20]李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[21]尹亮, 刘伟强. 液氧/甲烷发动机研究进展与技术展望[J]. 航空兵器, 2018, 25(4): 21-27.
YIN L, LIU W Q. Review and prospect of LOx/methane rocket engine systems[J]. Aero Weaponry, 2018, 25(4): 21-27.
[22]张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4): 9-15.
ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 9-15.
[23]LI Y, FANG J, SUN B, et al. Index allocation for a reusable LOx/CH4 rocket engine[J]. Chinese Journal of Aeronautics, 2021, 34(2): 432- 440.
[24]刘士杰, 康红雷, 梁国柱. 液体火箭发动机重复使用性指标分配方法的初探[C]// 第三届空天推进技术会议论文集.厦门:[s.n.],2020.
[25]姚草根, 张大海, 刘凤娟, 等. 重复使用液体火箭发动机用材料及工艺研究进展[J]. 宇航材料工艺, 2023, 53(5): 1-14.
YAO C G, ZHANG D H, LIU F J, et al. Study on material and processing technology for reusable liquid rocket engine[J]. Aerospace Materials & Technology, 2023, 53(5): 1-14.
[26]刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626.
LIU S J, LIANG G Z. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power, 2015, 30(3): 611-626.
[27]容易, 刘辉, 于子文, 等. 可重复使用运载火箭返回段低温流体行为特性[J]. 航空学报, 2023, 44(23): 105-116.
RONG Y, LIU H, YU Z W, et al. Behavior of cryogenic propellant in return stage of reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 105-116.
[28]包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 8-33.
BAO W M. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 8-33.
[29]刘士杰. 液体火箭发动机涡轮泵可重复使用性研究[D]. 北京: 北京航空航天大学, 2017.
[30]YOSCHIDA M., TAKADA S, NARUO Y, et al. Development status of reusable rocket engine[J]. Trans.Jsass space tech.2009,7(26): 13-18.
[31]黄伟. 可重复使用航天器回收着陆技术综述[J]. 中国航天, 2023(8): 8-15.
HUANG W. Summary of recovery and landing technology of reusable spacecraft[J]. Aerospace China, 2023(8): 8-15.
[32]POWER R P A. Space shuttle main engine orientation[R]. BC98-04,2011.
[33]DUTHEIL J P, BOUÉ Y. Highly reusable LOx/LCH4 ACE rocket engine designed for spaceplane: technical maturation progress via key system demonstrators results[C]//7th European Conference for Aeronautics and Space Science.[S.l.]:[s.n.], 2017.
[34]BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: a review[J]. Materials & Design, 2021, 209: 110008.
[35]BALLARD R O. Next-generation RS-25 engines for the NASA Space Launch System[C]// 7th European Conference for Aeronautics and Space Sciences.[S.l.]:[s.n.], 2017.
[36]顾孟奇, 朱家才, 郭万林, 等. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 34-57.
GU M Q, ZHU J C, GUO W L, et al. Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 34-57.
[37]陈守芳, 李健, 熊莉芳, 等. 可重复使用发动机管路连接与密封可靠性工作思考[J]. 空天防御, 2023, 6(1): 6-10.
CHEN S F, LI J, XIONG L F, et al. Thinking on reliability of pipeline connection and seal of reusable engine[J]. Air & Space Defense, 2023, 6(1): 6-10.
[38]李伟, 石珊珊, 康红雷, 等. 24°球形管路接头低温密封性能研究[J]. 低温工程, 2023(3): 76-81.
LI W, SHI S S, KANG H L, et al. Study on cryogenic sealing performance of 24° orbicular pipe sealing joint[J]. Cryogenics, 2023(3): 76-81.
[39]AYER A. A basic comparison of the space shuttle main engine and the J-2X engine[R]. KSC-2007-162,2007.
[40]金平, 吕俊杰, 戚亚群, 等. 可重复使用液体火箭发动机寿命问题探讨[J]. 宇航总体技术, 2023, 7(4): 51-59.
JIN P, LYU J J, QI Y Q, et al. Discussion on the life of reusable liquid rocket engine[J]. Astronautical Systems Engineering Technology, 2023, 7(4): 51-59.
[41]张嘉益, 刘欣. 可重复使用航天器系统的可靠性分析[J]. 空间电子技术, 2023, 20(2): 40-47.
ZHANG J Y, LIU X. Reliability analysis of reusable spacecraft system[J]. Space Electronic Technology, 2023, 20(2): 40-47.
[42]KIM K O, ROH T, LEE J W, et al. Derating design for optimizing reliability and cost with an application to liquid rocket engines[J]. Reliability Engineering & System Safety, 2016, 146: 13-20.
[43]JIN P, CHEN Z W, LI R Z, et al. Opportunistic preventive maintenance scheduling for multi-unit reusable rocket engine system based on the variable maintenance task window method[J]. Aerospace Science and Technology, 2022, 121: 107346.
[44]刘哲, 张柏楠, 张宁, 等. 运载火箭可重复使用总体技术研究[J]. 中国航天, 2022(10): 36- 41.
LIU Z, ZHANG B N, ZHANG N, et al. Research on the overall technology of reusable launch vehicle[J]. Aerospace China, 2022(10): 36- 41.
[45]SpaceX. How much does it cost to launch a reused Falcon 9? Elon Musk explains why reusability is worth it[EB/OL].[2022-11-11].https://www.quora.com/What-is-the-the-total-cost-break-down-for-SpaceX-Falcon-9.
[46]杨浩亮, 杨毅强, 廉洁, 等. 商业可重复使用火箭关键技术与创新[J]. 中国航天, 2022(11): 8-14.
YANG H L, YANG Y Q, LIAN J, et al. Key technology and innovation of commercial reusable rocket[J]. Aerospace China, 2022(11): 8-14.
[47]肖红梅, 渠成兵, 刘玉, 等. 中科院理化所极低温力学测试系统介绍[C]// 第十三届全国实验力学学术会议.昆明:中国力学学会, 2012.
[48]邓群, 杜金辉, 赵长虹, 等. GH4169合金的低温性能[J]. 钢铁研究学报, 2011, 23(S2): 185-188.
DENG Q, DU J H, ZHAO C H, et al. Low temperature properties of GH4169 alloy[J]. Journal of Iron and Steel Research, 2011, 23(S2): 185-188.
[49]张允涛, 宋少伟, 王珺. 随机振动疲劳试验的小裂纹扩展分析方法[J]. 火箭推进, 2021, 47(2): 68-75.
ZHANG Y T, SONG S W, WANG J. Study on analysis method of small crack growth in random vibration fatigue test[J]. Journal of Rocket Propulsion, 2021, 47(2): 68-75.
[50]王长高. 以可靠性为中心的维修思想研究[J]. 北京航空航天大学学报(社会科学版), 1999, 12(1): 36-39.
WANG C G. Research on reliability-centered maintenance thought[J]. Journal of Beijing University of Aeronautics and Astronautics(Social Sciences Edition), 1999, 12(1): 36-39.
[51]陈勃, 鲍蕊, 张建宇, 等. 飞机结构耐久性/损伤容限综合设计与分析[J]. 北京航空航天大学学报, 2004, 30(2): 139-142.
CHEN B, BAO R, ZHANG J Y, et al. Combined design and analysis of durability and damage tolerance for flight structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(2): 139-142.
[52]李志洪, 彭小波, 谢红军, 等. 可重复使用商业运载火箭的发展与展望[J]. 中国航天, 2022(7): 27-33.
LI Z H, PENG X B, XIE H J, et al. Development and prospect of reusable commercial launch vehicle[J]. Aerospace China, 2022(7): 27-33.