[1] 李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[2]BIN L. Research on key technologies for reusable liquid rocket engines[J]. Aerospace China, 2022, 23(4): 24-34.
[3]ZHANG Y L, WU J J, HUANG M C, et al. Liquid-propellant rocket engine health-monitoring techniques[J]. Journal of Propulsion and Power, 1998, 14(5): 657-663.
[4]姚尚鹏, 黄红, 赵佳敏, 等. 涡轮泵典型故障仿真与辨识系统设计[J]. 火箭推进, 2023, 49(3): 96-104.
YAO S P, HUANG H, ZHAO J M, et al. Typical fault simulation and identification system design for turbopump[J]. Journal of Rocket Propulsion, 2023, 49(3): 96-104.
[5]MARKOU M, SINGH S. Novelty detection: a review. Part 1: statistical approaches[J]. Signal Processing, 2003, 83(12): 2481-2497.
[6]XU J M, LI C H, MIAO X S, et al. An overview of bearing candidates for the next generation of reusable liquid rocket turbopumps[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 26.
[7]刘子俊, 冯勇, 陈景龙, 等. 基于多源数据的液体火箭发动机智能异常检测[J]. 火箭推进, 2022, 48(3): 79-86.
LIU Z J, FENG Y, CHEN J L, et al. Intelligent anomaly detection of liquid rocket engine with multi-source data[J]. Journal of Rocket Propulsion, 2022, 48(3): 79-86.
[8]臧东情, 秦雷, 何伟锋, 等. 基于EMD-Hilbert包络谱分析的涡轮泵轴承故障特征识别[J]. 火箭推进, 2023, 49(5): 59-65.
ZANG D Q, QIN L, HE W F, et al. Fault feature identification of turbopump bearings based on EMD-Hilbert envelope spectrum analysis[J]. Journal of Rocket Propulsion, 2023, 49(5): 59-65.
[9]郭霄峰.液体火箭发动机试验[M]. 北京:中国宇航出版社,1990.
GUO X F. Liquid rocket engine test[M].Beijing: China Aerospace Publishing House, 1990.
[10]ZARETSKY E V, CHIU Y P, TALLIAN T E. Ceramic bearings for use in gas turbine engines[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 2830-2846.
[11]PASINI A, SIMI R, BROTINI G, et al. A test facility for the lifetime characterization of cryogenic high-speed bearings[C]//AIAA Propulsion and Energy 2021 Forum. Reston, Virginia: AIAA, 2021.
[12]AVERBACH B L, BAMBERGER E N. Analysis of bearing incidents in aircraft gas turbine mainshaft bearings[J]. Tribology Transactions, 1991, 34(2): 241-247.
[13]WARHADPANDE A, SADEGHI F, KOTZALAS M N, et al. Effects of plasticity on subsurface initiated spalling in rolling contact fatigue[J]. International Journal of Fatigue, 2012, 36(1): 80-95.
[14]MITAMURA N, HIDAKA H, TAKAKI S. Microstructural development in bearing steel during rolling contact fatigue[J]. Materials Science Forum, 2007, 539/540/541/542/543: 4255-4260.
[15]刘耀中, 张旭, 杨柳. 滚动轴承的接触疲劳微观机理及影响因素[J]. 轴承, 2015(10): 53-57.
LIU Y Z, ZHANG X, YANG L. Microscopic mechanisms and influencing factors for contact fatigue of rolling bearings[J]. Bearing, 2015(10): 53-57.
[16]李鸿亮, 郝大庆, 郑艳伟, 等. 高速频繁起停球轴承设计与试验[J]. 航空动力学报, 2021, 36(12): 2596-2605.
LI H L, HAO D Q, ZHENG Y W, et al. Design and test for ball bearings under high-speed and frequent start-stop[J]. Journal of Aerospace Power, 2021, 36(12): 2596-2605.
[17]邓四二, 贾群义, 薛进学. 滚动轴承设计原理[M]. 2版. 北京: 中国标准出版社, 2014.
DENG S E,JIA Q Y,XUE J X. Design principles of rolling bearings[M].2nd ed.Beijing: China Standard Press,2014.
[18]中国机械工业联合会. 滚动轴承 额定动载荷和额定寿命: GB/T 6391—1995[S]. 北京: 中国标准出版社,1995.
China Machinery Industry Federation.Rolling bearings:dynamic load ratings and rating life: GB/T 6391—1995[S]. Beijing: China Standard Press,1995.