[1] DENEU F, MALASSIGNE M, LE-COULS O, et al. Promising solutions for fully reusable two-stage-to-orbit configurations[J]. Acta Astronautica, 2005, 56(8): 729-736.
[2]BYSANI S K, KARPUR A, ARUN N. Vertical landing rockets[C]//4th TMAL02 Expert Conference.[S.l.]:[s.n.], 2019.
[3]FERRANTE R. A robust control approach for rocket landing[D].Edinburgh: University of Edinburgh, 2017.
[4]BLACKMORE L.Autonomous precision landing of spacerockets[Z].2016.
[5]郑雄, 杨勇, 姚世东, 等. 法尔肯9可重复使用火箭发展综述[J]. 导弹与航天运载技术, 2016(2): 39- 46.
ZHENG X, YANG Y, YAO S D, et al. Survey and review on development of falcon 9 reusable rocket[J]. Missiles and Space Vehicles, 2016(2): 39- 46.
[6]胡冬生, 张雪梅, 刘丙利, 等. 重复使用火箭垂直回收任务弹道分析[J]. 导弹与航天运载技术, 2018(5): 21-26.
HU D S, ZHANG X M, LIU B L, et al. Trajectory analysis on vertical-recovery missions of reusable launch vehicle[J]. Missiles and Space Vehicles, 2018(5): 21-26.
[7]HEINRICH S,HUMBERT A, AMIEL R. Greenspace: recovery and reusability scenarios for launcher industry[C]//2018 SpaceOps Conference.[S.I.]:[s.n.],2018.
[8]谭永华, 李平, 杜飞平. 重复使用天地往返运输系统动力技术发展研究[J]. 载人航天, 2019, 25(1): 1-11.
TAN Y H, LI P, DU F P. Research on development of propulsion technology for reusable space transportation system[J]. Manned Spaceflight, 2019, 25(1): 1-11.
[9]李杨, 刘昶, 王吉飞, 等. 垂直起降运载火箭总体方案研究[J]. 南京航空航天大学学报, 2019, 51(S1): 1-6.
LI Y, LIU C, WANG J F, et al. Study on the overall scheme of vertical take-off and landing launch vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(S1): 1-6.
[10]贺小帆, 朱俊贤. 军用飞机结构耐久性严重谱编制与应用研究进展[J]. 航空学报, 2022, 43(12): 025070.
HE X F, ZHU J X. Advances in durability severe spectrum: development and application for military aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025070.
[11]马双员, 张永峰. 航空发动机载荷谱综述[J]. 现代机械, 2011(5): 15-17.
MA S Y, ZHANG Y F. Overview of aeroengine loading spectrum[J]. Modern Machinery, 2011(5): 15-17.
[12]李斌, 张小平, 马冬英. 我国新一代载人火箭液氧煤油发动机[J]. 载人航天, 2014, 20(5): 427- 431.
LI B, ZHANG X P, MA D Y. The LOx/kerosene rocket engine for Chinese new-generation manned launch vehicle[J]. Manned Spaceflight, 2014, 20(5): 427- 431.
[13]李斌, 陈晖, 马冬英, 等. 500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10.
LI B, CHEN H, MA D Y, et al. Development of 500 tf class high pressure stage combustion LOx/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10.
[14]王振, 谭永华, 黄道琼, 等. 液体火箭发动机结构中的疲劳问题[C]//中国力学大会2017暨庆祝中国力学学会成立60周年大会论文集.北京:中国力学学会, 2017.
[15]张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 4-15.
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 4-15.
[16]ABDUL-AZIZ A. Assessment of crack growth in a space shuttle main engine first-stage high-pressure fuel turbopump blade[J]. Finite Elements in Analysis and Design, 2002, 39(1): 1-15.
[17]BLAIR J, RYAN R S, SCHUTZENHOFER L A. Lessons learned in engineering[R]. NASA/CR-2011-216468, 2011.
[18]SpaceX.Falcon user's guide[EB/OL].[2023-07-15].https://www.spacex.com.
[19]NASA.Falcon 9 launches with CRS-11 Dragon on 100th 39A launch[EB/OL]. [2023-07-18].https://www. nasaspaceflight.com/2017/06/spacex-falcon-9-crs-11-dragon-iss-100th-39a.