[1] 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹, 2013(8): 78-81.
XIAO H Y, GAO F, LI N. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal, 2013(8): 78-81.
[2]PAGEL L L, WARMBOLD W R. Active cooling of a hydrogen-fueled scramjet engine[J]. Journal of Aircraft, 1969, 6(5): 472- 474.
[3]郭朝邦, 李文杰, 邢娅. 法国超燃冲压发动机主动冷却耐高温结构部件研究进展[J].飞航导弹, 2011(11): 84-91.
GUO C B, LI W J, XING Y. Research progress of active cooling of high temperature resistant structural components in French scramjet[J]. Aerodynamic Missile Journal, 2011(11): 84-91.
[4]陈锐达, 徐辉, 陈泓宇, 等. 1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J]. 火箭推进, 2023, 49(4): 17-25.
CHEN R D, XU H, CHEN H Y, et al. Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J]. Journal of Rocket Propulsion, 2023, 49(4): 17-25.
[5]卞香港, 李龙飞, 王化余, 等. 基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J]. 火箭推进, 2023, 49(4): 74-81.
BIAN X G, LI L F, WANG H Y, et al. Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J]. Journal of Rocket Propulsion, 2023, 49(4): 74-81.
[6]刘世俭, 刘兴洲. 超燃冲压发动机可贮存碳氢燃料再生主动冷却换热过程分析[J]. 飞航导弹, 2009(3): 48-52.
LIU S J, LIU X Z. Analysis of regenerative active cooling heat transfer process of storable hydrocarbon fuel in scramjet[J]. Winged Missiles Journal, 2009(3): 48-52.
[7]FU Y C, WEN J, TAO Z, et al. Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes[J]. Experimental Thermal and Fluid Science, 2017, 85: 257-265.
[8]LIANG K M, YANG B E, ZHANG Z L. Investigation of heat transfer and coking characteristics of hydrocarbon fuels[J]. Journal of Propulsion and Power, 1998, 14(5): 789-796.
[9]SUN F, LI X, BOETCHER S K S, et al. Inhomogeneous behavior of supercritical hydrocarbon fuel flow in a regenerative cooling channel for a scramjet engine[J]. Aerospace Science and Technology, 2021, 117: 106901.
[10]BATES R, EDWARDS J, MEYER M. Heat transfer and deposition behavior of hydrocarbon rocket fuels[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2003.
[11]杨彩华. 冷却通道表面处理对超临界烃热裂解结焦的抑制作用[D]. 天津: 天津大学, 2012.
YANG C H. Coke inhibition for thermal cracking of supercritical hydrocarbon over treated surface of cooling channel[D].Tianjin: Tianjin University, 2012.
[12]张霖琪, 蒋杰, 阮灿,等. 增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究[J].航空动力学报,2022,37(7):1403-1412.
ZHANG L Q, JIANG J, YUAN C, et al.Experimental study on thermal oxidation coking characteristics of aviation kerosene in additively manufactured helical tubes[J]. Journal of Aerospace Power, 2022, 37(7): 1403-1412.
[13]王英杰, 徐国强, 邓宏武, 等. 进口温度影响航空煤油结焦特性实验[J]. 航空动力学报, 2009, 24(9): 1972-1976.
WANG Y J, XU G Q, DENG H W, et al. Experimental study of influence of inlet temperature on aviation kerosene coking characteristics[J]. Journal of Aerospace Power, 2009, 24(9): 1972-1976.
[14]GASCOIN N, GILLARD P, BERNARD S, et al. Characterisation of coking activity during supercritical hydrocarbon pyrolysis[J]. Fuel Processing Technology, 2008, 89(12): 1416-1428.
[15]WICKHAM D, ALPTEKIN G, ENGEL J, et al. Additives to reduce coking in endothermic heat exchangers[C]//35th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1999.
[16]张枭雄, 侯凌云, 莫崇康,等. 航空煤油热裂解结焦实验[J]. 航空动力学报,2017,32(6): 1307-1312.
ZHANG X X,HOU L Y,MO C K,et al.Experiment on thermal cracking coke of aviation kerosene[J]. Journal of Aerospace Power, 2017, 32(6): 1307-1312.
[17]JIN B T, JING K, LIU J, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 117-126.
[18]张强,汪旭清,刘国柱,等. 主动冷却通道内吸热型碳氢燃料热裂解结焦抑制机理[J]. 推进技术,2013,34(12): 1713-1718.
ZHANG Q, WANG X Q, LIU G Z, et al. Inhibition mechanism of pyrolytic cokes from endothermic hydrocarbon fuels in regenerative cooling channels[J]. Journal of Propulsion Technology, 2013, 34(12): 1713-1718.
[19]王新竹, 张泰昌, 陆阳,等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术,2014,35(2): 213-219.
WANG X Z, ZHANG T C, LU Y, et al.An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014,35(2): 213-219.
[20]王厚庆, 何国强, 刘佩进, 等. 主动冷却超燃冲压发动机最大工作马赫数评估[J]. 固体火箭技术, 2010, 33(4): 377-381.
WANG H Q, HE G Q, LIU P J, et al. Evaluation on maximum flight Mach number of active cooling scramjet[J]. Journal of Solid Rocket Technology, 2010, 33(4): 377-381.
[21]杨样, 张磊, 张若凌, 等. 超燃冲压发动机燃烧室主动冷却设计研究[J]. 推进技术, 2014, 35(2): 208-212.
YANG Y, ZHANG L, ZHANG R L, et al. Design research of an actively fuel-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 208-212.