|Table of Contents|

Effect of circumferential non-uniformity of inlet flow on flow and heat transfer in a precooler(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年02期
Page:
39-48
Research Field:
目次
Publishing date:

Info

Title:
Effect of circumferential non-uniformity of inlet flow on flow and heat transfer in a precooler
Author(s):
YU Xiyao1 LI Nan1 JIANG Miao1 LI Zhe2 NAN Xiangyi2 MA Yuan2 TANG Guihua1
1.MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2.National Key Laboratory of Aerospace Liquid Propulsion,Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
precooler non-uniformity heat transfer multidimensional coupling deflector
PACS:
TK124
DOI:
10.3969/j.issn.1672-9374.2024.02.004
Abstract:
The air pre-cooler is capable of reducing the air temperature entering the compressor at a short time, increasing the pressure ratio and the thrust. The circumferential non-uniformity of the pre-cooler inlet flow leads to non-uniformity cooling, which has an important effect on the efficiency of the pre-cooled engine cycle. Referring to the operating parameters of a pre-cooled engine, the physical model of the precooler is properly simplified, and the coupled computational method of two-dimensional flow field and three-dimensional tube bundle unit is proposed, and then a full-scale simulation of the precooler is carried out. The effects of geometric parameters of the precooler flow deflector are discussed, and the optimized parameters of flow deflector are obtained, which reduces the pressure drop by 13.1%. The effects of inlet flow circumferential non-uniformity on the flow field are discussed, and the inlet flow is more distributed to the tube bundle in the 4th region. The flow dead zone formed by the incoming air in the 1st region impedes the flow and increases the inlet angle of the unit tube bundle in the 1st region. The effects of flow uniformity and air inflow angle on heat transfer performance are discussed, and the coupling heat transfer mechanism of the microtube bundle heat exchanger with large temperature difference is revealed. The maximum deviation of the total heat transfer for the precooler is 2.45%, so the impact of air circumferential non-uniformity at the precooler inlet on the heat transfer of precooler can be neglected.

References:

[1] 邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机, 2021, 47(4): 8-21.
ZOU Z P, WANG Y F, ERI Q T, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine, 2021, 47(4): 8-21.
[2]马海波, 张蒙正. 预冷空气类动力系统发展历程浅析[J]. 火箭推进, 2019, 45(2): 1-8.
MA H B, ZHANG M Z. Preliminary analysis on development course of pre-cooling propulsion system[J]. Journal of Rocket Propulsion, 2019, 45(2): 1-8.
[3]张升升, 郑雄, 吕雅, 等. 国外组合循环动力技术研究进展[J]. 科技导报, 2020, 38(12): 33-53.
ZHANG S S, ZHENG X, LYU Y, et al. Research progress of oversea combined cycle propulsion technology[J]. Science & Technology Review, 2020, 38(12): 33-53.
[4]MURRAY J J, GUHA A, BOND A. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers[J]. Acta Astronautica, 1997, 41(11): 723-729.
[5]谭永华, 李平, 杜飞平. 重复使用天地往返运输系统动力技术发展研究[J]. 载人航天, 2019, 25(1): 1-11.
TAN Y H, LI P, DU F P. Research on development of propulsion technology for reusable space transportation system[J]. Manned Spaceflight, 2019, 25(1): 1-11.
[6]WEBBER H, BOND A, HEMPSELL M. Sensitivity of pre-cooled air-breathing engine performance to heat exchanger design parameters[C]//57th International Astronautical Congress. Reston, Virigina: AIAA, 2006.
[7]WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society, 2009, 62: 122-130.
[8]徐东君, 廉洁, 南向谊, 等. 复合印刷电路板式预冷器的热力设计与优化[J]. 火箭推进, 2022, 48(6): 59-68.
XU D J, LIAN J, NAN X Y, et al. Thermal design and optimization of hybrid printed circuit precooler[J]. Journal of Rocket Propulsion, 2022, 48(6): 59-68.
[9]李夔宁, 吴小波, 尹亚领. 平行流蒸发器内气液两相流分配均匀性实验研究[J]. 热能动力工程, 2009, 24(6): 759-765.
LI K N, WU X B, YIN Y L. Experimental study of the distribution uniformity of the gas-liquid two-phase flow in a parallel flow evaporator[J]. Journal of Engineering for Thermal Energy and Power, 2009, 24(6): 759-765.
[10]RAUL A, BHASME B N, MAURYA R S. A numerical investigation of fluid flow maldistribution in inlet header configuration of plate fin heat exchanger[J]. Energy Procedia, 2016, 90: 267-275.
[11]ZHOU J, SUN Z N, DING M, et al. CFD simulation for flow distribution in manifolds of central-type compact parallel flow heat exchangers[J]. Applied Thermal Engineering, 2017, 126: 670-677.
[12]赵云, 陈悄, 汪浩, 等. 环形扇片式预冷器空气侧数值模拟[C]//第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨2021航空发动机技术发展高层论坛论文集. 北京:中国航天第三专业信息网,2021.
[13]王海, 孙波, 卓长飞, 等. 预冷发动机进气道节流特性数值研究[J]. 航空动力学报, 2021, 36(3): 553-563.
WANG H, SUN B, ZHUO C F, et al. Numerical investigation on throttle characteristics of precooled engine inlets[J]. Journal of Aerospace Power, 2021, 36(3): 553-563.
[14]李明迪. 可调进气道气动-预冷的耦合机理研究[D]. 南京: 南京航空航天大学, 2020.
LI M D. Investigation on the coupling mechanism of aerodynamics and precooling of variable inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[15]李晨沛, 王跃社, 王海军, 等. 复合发动机预冷器换热特性研究[J]. 工程热物理学报, 2017, 38(4): 811-816.
LI C P, WANG Y S, WANG H J, et al. Numerical analysis of heat transfer in precooler for hybrid airbreathing rocket engines[J]. Journal of Engineering Thermophysics, 2017, 38(4): 811-816.
[16]李帅, 马同玲, 刘洪涛, 等. SABRE预冷器结构参数对其性能影响的数值分析[J]. 推进技术, 2022, 43(4): 252-259.
LI S, MA T L, LIU H T, et al. Numerical analysis of effects of pre-cooler structure parameter on its performance in SABRE[J]. Journal of Propulsion Technology, 2022, 43(4): 252-259.
[17]魏鑫, 金峰, 刘天依, 等. SABRE空气预冷器流动与换热数值研究[J]. 火箭推进, 2019, 45(5): 8-16.
WEI X, JIN F, LIU T Y, et al. Numerical study on flow and heat transfer of air precooler in SABRE[J]. Journal of Rocket Propulsion, 2019, 45(5): 8-16.
[18]LI N, ZHAO Y, WANG H, et al. Thermal and hydraulic performance of a compact precooler with mini-tube bundles for aero-engine[J]. Applied Thermal Engineering, 2022, 200: 117656.
[19]陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001.
[20]董其伍, 欧阳克, 刘敏珊, 等. 茹卡乌斯卡斯横掠错排管束实验模型的数值模拟[J]. 压力容器, 2010, 27(1): 21-26.
DONG Q W, OUYANG K, LIU M S, et al. Numerical investigation of fluid flow across tube bundles in Zukauskas experimental model[J]. Pressure Vessel Technology, 2010, 27(1): 21-26.
[21]茹卡乌斯卡斯 A A. 换热器内的对流传热[M]. 北京:科学出版社, 1986.

Memo

Memo:
-
Last Update: 1900-01-01