|Table of Contents|

Influence of installing thermal control components on working characteristics of space liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
1-10
Research Field:
目次
Publishing date:

Info

Title:
Influence of installing thermal control components on working characteristics of space liquid rocket engine
Author(s):
CHEN Ruida12 YU Peng12 DING Weihua12 LIU Changguo12 CHEN Hongyu12 XU Hui12
1.Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China
Keywords:
space liquid rocket engine thermal control component multilayer insulation material light shielding plate thermal radiation
PACS:
V439.7
DOI:
10.3969/j.issn.1672-9374.2024.03.001
Abstract:
Accurately grasping the effects of installing different thermal control components on the working performance and temperature characteristics of space liquid rocket engine is crucial to its in-orbit reliability. High-altitude simulation hot fire tests of the 150 N bipropellant engine were carried out, and the influence of the thermal control component on the undersurface of the head flange, the head-wrapped multilayer insulation material and the light shielding plate on the engine steady-state working performance and temperature distribution were investigated in turn. The results show that the engine thrust output is stable after installing different thermal control components. The thermal control component installed on the undersurface of the head flange effectively isolates the heat radiation from the high-temperature body, which can cool down the temperature by 125-160 ℃, and reduce the flange temperature increasement by 30%-44%. The subsequent installation of the head-wrapped multilayer insulation material and the light shielding plate has little effect on the flange temperature distribution. The head-wrapped multilayer insulation material causes the temperature of the head and body weld seam to rise about 40 ℃. The light shielding plate has no effect on the head and body weld seam temperature, but increases the radiant heat flow to the undersurface of the head flange. Installing different thermal control components do not affect the engine working performance. After accumulating 4 163 s of steady state ignition and 25 000 times of pulse operation of the engine, the center of the multilayer insulation material is ablated in an area of about 20 mm, and the thermal control components are still effective in reducing the impact of heat radiation from the high-temperature body. It is recommended to increase the diameter of the multilayer insulation material center aperture to more than 100 mm.

References:

[1] 侯增祺,胡金刚. 航天器热控制技术: 原理及其应用[M]. 北京: 中国科学技术出版社, 2007.
[2]刘昌国, 赵婷, 姚锋, 等. 第二代490 N轨控发动机研制及在轨飞行验证[J]. 推进技术, 2020, 41(1): 49-57.
LIU C G, ZHAO T, YAO F, et al. Development and on-orbit flight verification of the second generation 490 N liquid apogee engine[J]. Journal of Propulsion Technology, 2020, 41(1): 49-57.
[3]邱家稳, 冯煜东, 吴春华. 航天器热控薄膜技术[M]. 北京: 国防工业出版社, 2016.
[4]GILMORE D G. Spacecraft thermal control handbook[M]. 2nd ed. El Segundo, CA: Aerospace Press, 2002.
[5]KARAM R D. Satellite thermal control for systems engineers[M]. Reston, VA: AIAA, 1998.
[6]SURESHA S, KATTI R A. Thermal sensitivity analysis of a 22 N bipropellant thruster in a spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1999, 213(5): 321-335.
[7]陈阳春, 丁卫华, 朱叶茂, 等. 双组元150 N发动机头部热控组件温度适应性研究[J]. 推进技术, 2023, 44(7): 261-267.
CHEN Y C, DING W H, ZHU Y M, et al. Temperature adaptability of thermal control assembly of bipropellant 150 N engine head[J]. Journal of Propulsion Technology, 2023, 44(7): 261-267.
[8]陈阳春, 叶胜, 丁卫华, 等. 空间站核心舱俯仰机组热设计及在轨验证[J]. 推进技术, 2023, 44(3): 165-171.
CHEN Y C, YE S, DING W H, et al. Thermal design and flight verification of pitching unit in core cabin of space station[J]. Journal of Propulsion Technology, 2023, 44(3): 165-171.
[9]陈阳春, 李世恭, 胡承云. 空间站核心舱轨控机组热设计及飞行验证[J]. 火箭推进, 2022, 48(4): 59-65.
CHEN Y C, LI S G, HU C Y. Thermal design and flight verification of orbit control unit in core cabin of space station[J]. Journal of Rocket Propulsion, 2022, 48(4): 59-65.
[10]刘海娃. 载人飞船连续偏航姿态下轨控机组热控设计[J]. 火箭推进, 2018, 44(5): 10-15.
LIU H W. Thermal control design of divert thruster unit in manned spacecraft under continuous yaw attitude[J]. Journal of Rocket Propulsion, 2018, 44(5): 10-15.
[11]张暘, 赵剑锋, 韩崇巍, 等. 远地点发动机热防护模型[J]. 航空动力学报, 2021, 36(8): 1594-1604.
ZHANG Y, ZHAO J F, HAN C W, et al. Thermal protection model of apogee engine[J]. Journal of Aerospace Power, 2021, 36(8): 1594-1604.
[12]张暘, 赵剑锋, 韩崇巍, 等. 航天器用低温多层隔热性能计算方程[J]. 中国空间科学技术, 2021, 41(2): 63-70.
ZHANG Y, ZHAO J F, HAN C W, et al. Thermal performance equation of multilayer insulator for space-craft[J]. Chinese Space Science and Technology, 2021, 41(2): 63-70.
[13]张彧, 高天, 刘冈云, 等. 嫦娥五号轨道器3 000 N发动机高温隔热屏设计[J]. 上海航天(中英文), 2022, 39(S1): 27-32.
ZHANG Y, GAO T, LIU G Y, et al. Design of high temperature heat shield for 3 000 N engine of Chang'e V orbiter[J]. Aerospace Shanghai(Chinese & English), 2022, 39(S1): 27-32.
[14]CUNNINGTON G, TIEN C. A study of heat-transfer processes in multilayer insulations[C]//4th Thermophysics Conference. Reston, VA: AIAA, 1969.
[15]雷营生, 徐红艳, 谢荣建, 等. 空间用多层绝热组件隔热特性的试验研究[J]. 红外, 2018, 39(3): 13-17.
LEI Y S, XU H Y, XIE R J, et al. Experimental study of heat insulation capability of MLI assembly in space[J]. Infrared, 2018, 39(3): 13-17.
[16]李永春, 刘强, 马洪炯, 等. 真空环境中多层隔热材料的隔热性能[J]. 宇航材料工艺, 2012, 42(4): 90-92.
LI Y C, LIU Q, MA H J, et al. Thermal properties of multilayer insulation materials in vacuum[J]. Aerospace Materials & Technology, 2012, 42(4): 90-92.
[17]朱尚龙, 邓婉, 李德富, 等. 基于发动机高模试车的高温隔热屏热模型修正技术[J]. 宇航材料工艺, 2021, 51(6): 94-97.
ZHU S L, DENG W, LI D F, et al. Modification of high temperature heat shield thermal analysis model based on altitude simulated test[J]. Aerospace Materials & Technology, 2021, 51(6): 94-97.
[18]魏超, 张忠利. 深空探测发动机热环境研究[J]. 航空动力学报, 2010, 25(5): 1139-1144.
WEI C, ZHANG Z L. Investigation on thermal environment for deep-space-exploration liquid rocket engine[J]. Journal of Aerospace Power, 2010, 25(5): 1139-1144.
[19]王江, 耿宏飞, 刘炜葳, 等. 双组元25 N发动机热辐射影响研究[J]. 上海航天, 2016, 33(2): 73-77.
WANG J, GENG H F, LIU W W, et al. Research on thermal radiation effect of 25 N Bi-propellant thrusters[J]. Aerospace Shanghai, 2016, 33(2): 73-77.
[20]刘自军, 向艳超, 斯东波, 等. 嫦娥三号探测器热控系统设计与验证[J]. 中国科学: 技术科学, 2014, 44(4): 353-360.
LIU Z J, XIANG Y C, SI D B, et al. Design and verification of thermal control system for Chang'e-3 probe[J]. Scientia Sinica(Technologica), 2014, 44(4): 353-360.

Memo

Memo:
-
Last Update: 1900-01-01