|Table of Contents|

Experiment of gas injection atomization characteristics of long swirl cavity open-end centrifugal nozzle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
28-41
Research Field:
目次
Publishing date:

Info

Title:
Experiment of gas injection atomization characteristics of long swirl cavity open-end centrifugal nozzle
Author(s):
PENG Leqin WU Huibo XU Tiangang YANG Anlong YANG Bao'e
National Key Laboratory of Aerospace Liquid Propulsion,Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
centrifugal nozzle long swirl cavity gas injection atomization breakage morphology gas-liquid two-phase pressure building atomization particle size
PACS:
V434.3
DOI:
10.3969/j.issn.1672-9374.2024.03.004
Abstract:
Using water and kerosene as working fluids and nitrogen and helium as injection gases, the atomization characteristics of the long swirl cavity open-end centrifugal nozzle were experimentally studied under different gas flow rates. The study included analyzing the breakage morphology of the injection liquid film, the pressure of gas-liquid two-phase mixing, and the atomization particle size. The results show that as the gas-liquid mass flow ratio increases, the breakage mode gradually shifts from flange-type breakage and porous-type breakage to burst-type breakage. Additionally, the impact length of central airflow increases, while the impact frequency of airflow does not follow a linear pattern with the change in gas-liquid mass flow ratio. When the gas flow ratio is high or low, the frequency of airflow impact increases. Compared with nitrogen gas, helium gas has a faster pressure-building speed and higher pressure-building value. However, the pressure fluctuation in the mixing chamber is more violent during the pressure building process for the cases of helium gas. The particle size of the cases using helium gas are generally smaller than that of nitrogen gas with the same gas pressure. However, when the flow rate of helium gas is too high, it can cause airflow impact, leading to uneven distribution of atomized particle sizes.

References:

[1] LEFEBVRE A H, MCDONELL V G. Atomization and sprays [M]. Boca Raton: CRC Press, 2017.
[2]KONSTANTINOV D, MARSH R, BOWEN P, et al. Effervescent atomization for industrial energy-technology review[J]. Atomization and Sprays, 2010, 20(6): 525-552.
[3]张榛, 胡羽, 严浩, 等. 空间双组元发动机离心式喷注器的喷注流场诊断技术研究[J]. 推进技术, 2022, 43(3): 76-84.
ZHANG Z, HU Y, YAN H, et al. Diagnosis technology research of injection spray field for swirl injector of bipropellant space engine[J]. Journal of Propulsion Technology, 2022, 43(3): 76-84.
[4]刘昌国, 陈锐达, 刘犇, 等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进, 2021, 47(3): 8-15.
LIU C G, CHEN R D, LIU B, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15.
[5]薛帅杰, 刘红军, 陈鹏飞, 等. 注气离心喷嘴喷注过程稳定性试验[J]. 航空学报, 2019, 40(7): 122697.
XUE S J, LIU H J, CHEN P F, et al. Test on spray stability of swirl injector with gas injection[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 122697.
[6]王文杰, 郑学波, 白博峰. 气泡雾化喷嘴雾化特性实验研究[J]. 工程热物理学报, 2019, 40(4): 834-838.
WANG W J, ZHENG X B, BAI B F. Experimental study on the characteristics of effervescent atomization[J]. Journal of Engineering Thermophysics, 2019, 40(4): 834-838.
[7]ABHIJEET K, SRIKRISHNA S. Large scale instabilities in coaxial air-water jets with annular air swirl[J]. Physics of Fluids, 2019, 31(12): 124103.
[8]孙春华, 宁智, 乔信起, 等. 气泡雾化喷嘴泡状流出口喷雾脉动特征[J]. 化工学报, 2018, 69(10): 4253-4260.
SUN C H, NING Z, QIAO X Q, et al. Spray pulsating of effervescent atomizer operating in bubbly flow[J]. CIESC Journal, 2018, 69(10): 4253-4260.
[9]ZAREMBA M, KOZÁK J, MALY' M, et al. An experimental analysis of the spraying processes in improved design of effervescent atomizer[J]. International Journal of Multiphase Flow, 2018, 103: 1-15.
[10]张凤华, 徐俊超, 苏新, 等. 不同壅塞管直径壅塞空化器的数值研究[J]. 机械科学与技术, 2015, 34(1): 131-135.
ZHANG F H, XU J C, SU X, et al. Numerical simulation on choking-cavitator having different diameters of choke pipe[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(1): 131-135.
[11]付英杰, 魏英杰, 张嘉钟. 喷管内临界泡状流计算分析[J]. 工程力学, 2010, 27(4): 51-56.
FU Y J, WEI Y J, ZHANG J Z. Numerical simulation of critical bubbly nozzle flows[J]. Engineering Mechanics, 2010, 27(4): 51-56.
[12]王晓鸣, 李强, 邹宗树, 等. 利用壅塞原理均匀分配高炉各风口的喷煤量[J]. 东北大学学报, 2006, 27(9): 999-1002.
WANG X M, LI Q, ZOU Z S, et al. Uniformly distributed mass flow rate of PCI into BF tuyeres on formation principle of choking[J]. Journal of Northeastern University, 2006, 27(9): 999-1002.
[13]陈鹏飞, 王丹, 王玫, 等. 反压条件下Y型喷嘴的变工况试验[J]. 火箭推进, 2016, 42(6): 25-30.
CHEN P F, WANG D, WANG M, et al. Experimental study on variable-flow performance of Y-shape nozzle at back pressure[J]. Journal of Rocket Propulsion, 2016, 42(6): 25-30.
[14]PACIFICO A L, YANAGIHARA J I. The influence of geometrical and operational parameters on Y-jet atomizers performance[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(1): 13-22.
[15]池保华, 洪流, 杨国华, 等. Y型喷嘴穿透特性的实验和模型研究[J]. 火箭推进, 2011, 37(3): 38-41.
CHI B H, HONG L, YANG G H, et al. Experimental and model research of penetration characteristic for Y-shape nozzle[J]. Journal of Rocket Propulsion, 2011, 37(3): 38-41.
[16]章明川, 吕勇, 王峻晔, 等. Y型喷嘴内部气液两相流动及液膜雾化的数学模型[J]. 燃烧科学与技术, 2000, 6(3): 205-209.
ZHANG M C, LYU Y, WANG J Y, et al. Mathematical modeling on the gas-liquid two phase flow in the Y-jet nozzle and its atomization process[J]. Journal of Combustion Science and Technology, 2000, 6(3): 205-209.
[17]SOVANI S D, SOJKA P E, LEFEBVRE A H. Effervescent atomization[J]. Progress in Energy and Combustion Science, 2001, 27(4): 483-521.
[18]刘猛, 段钰锋, 张铁男, 等. 液体性质对气泡雾化液滴不稳定性的影响[J]. 东南大学学报(自然科学版), 2012, 42(2): 295-300.
LIU M, DUAN Y F, ZHANG T N, et al. Influence of liquids properties on unsteadiness of droplet in effervescent sprays[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(2): 295-300.
[19]MLKVIK M, STÄHLE P, SCHUCHMANN H P, et al. Twin-fluid atomization of viscous liquids: The effect of atomizer construction on breakup process, spray stability and droplet size[J]. International Journal of Multiphase Flow, 2015, 77: 19-31.
[20]ZAREMBA M, WEIβ L, MALY' M, et al. Low-pressure twin-fluid atomization: effect of mixing process on spray formation[J]. International Journal of Multiphase Flow, 2017, 89: 277-289.
[21]刘联胜, 杨华, 吴晋湘, 等. 环状出口气泡雾化喷嘴液膜破碎过程与喷雾特性[J]. 燃烧科学与技术, 2005, 11(2): 121-125.
LIU L S, YANG H, WU J X, et al. Studies on breakup of liquid-sheet and spray characteristics downstream of the annular-spout effervescent atomizer[J]. Journal of Combustion Science and Technology, 2005, 11(2): 121-125.
[22]SHEPARD T. Bubble size effect on effervescent atomization [D]. Minnesota:University of Minnesota, 2011.
[23]SUN C H, NING Z, LV M, et al. Time-frequency analysis of acoustic and unsteadiness evaluation in effervescent sprays[J]. Chemical Engineering Science, 2015, 127: 115-125.
[24]ZHAO H, XU J L, WU J H, et al. Breakup morphology of annular liquid sheet with an inner round air stream[J]. Chemical Engineering Science, 2015, 137: 412-422.
[25]LORCHER M, SCHMIDT F, MEWES D. Effervescent atomization of liquids [J]. Atomization and Sprays, 2005, 15: 145-168.
[26]JEDELSKY J, JICHA M. Unsteadiness in effervescent sprays-measurement and evalution using combined PIV-PLIF technique [C]//13th International Symposium on Applicaiton of Laser Technique to Fluid Mechanics. [S.l.]: [s.n.], 2006.
[26]JEDELSKY' J, JICHA M. Unsteadiness in effervescent sprays-measurement and evaluation using combined PIV-PLIF technique[EB/OL]. [2023-08-27]. https://www.semanticscholar.org/paper/Unsteadiness-in-Effervescent-Sprays-%E2%80%93-Measurement-%E2%80%93-Jedelsk%C3%BD-Jicha/e5edf9b6890c71f460ce015065df33dadd28eaa0, 2006.
[27]EDWARDS C F, MARX K D. Multipoint statistical structure of the ideal spray, part ii: evaluating steadiness using the interparticle time distribution[J]. Atomization and Sprays, 1995, 5: 457-505.
[28]孙靖阳, 马原, 张淼, 等. 燃气发生器内气体吹除过程压降特性实验研究[J]. 西安交通大学学报, 2023, 57(3): 79-85.
SUN J Y, MA Y, ZHANG M, et al. Experimental study of pressure drop characteristics on gas injection and emulsification process in gas generator chamber[J]. Journal of Xi'an Jiaotong University, 2023, 57(3): 79-85.
[29]谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209.
TAN Y H, DU F P, CHEN J H, et al. Study on deep variable thrust system of LOX/kerosene high pressure staged combustion engine[J]. Journal of Propulsion Technology, 2018, 39(6): 1201-1209.
[30]吴慧博, 杨岸龙, 张锋, 等. 反压对撞击式喷嘴雾化特性影响实验研究 [J]. 航空学报, 2024, 45: 529213.
WU H B, YANG A L, ZHANG F, et al. Experimental study for effects of back pressure on atomization character-istics of impinging jet injector[J]. Acta Aeronauticaet Astronautica Sinica, 2024, 45: 529213.
[31]张海滨, 裴焕, 张浩, 等. 气液两相环状流射流液膜的破碎与雾化特性实验研究[J]. 推进技术, 2022, 43(4): 183-189.
ZHANG H B, PEI H, ZHANG H, et al. Experimental study on liquid film breakup and atomization of gas-liquid annular flow jet[J]. Journal of Propulsion Technology, 2022, 43(4): 183-189.
[32]RIZK N K, LEFEBVRE A H. Internal flow characteristics of simplex swirl atomizers[J]. Journal of Propulsion and Power, 1985, 1(3): 193-199.
[33]JICHA M, JEDELSKY J. Unsteadiness in effervescent sprays: A new evaluation method and the influence of operational conditions[J]. Atomization and Sprays, 2008, 18(1): 49-83.
[34]CASIANO M J, HULKA J R, YANG V. Liquid-propellant rocket engine throttling: a comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5): 897-923.

Memo

Memo:
-
Last Update: 1900-01-01