[1] AI Y, ZHU S P, LIAO D, et al. Probabilistic modeling of fatigue life distribution and size effect of components with random defects[J]. International Journal of Fatigue, 2019, 126: 165-173.
[2]AI Y, ZHU S P, LIAO D, et al. Probabilistic modelling of Notch fatigue and size effect of components using highly stressed volume approach[J]. International Journal of Fatigue, 2019, 127: 110-119.
[3]陆山, 张鸿, 唐俊星, 等. 考虑尺寸效应的轮盘应力疲劳概率寿命分析方法[J]. 航空动力学报, 2011, 26(9): 2039-2043.
LU S, ZHANG H, TANG J X, et al. Analysis method for the stress fatigue probability life of a disk considering size effect[J]. Journal of Aerospace Power, 2011, 26(9): 2039-2043.
[4]陆山, 夏佳峰. 基于SWT模型的概率寿命分析体方法[J]. 航空工程进展, 2014, 5(2): 182-186.
LU S, XIA J F. Volume method based on the SWT model for the analysis of the probability life[J]. Advances in Aeronautical Science and Engineering, 2014, 5(2): 182-186.
[5]KUHN P, HARDRANH F. An engineering method for estimating notch-size effect in fatigue tests of steel[R]. NACA TN 2805, 1952.
[6]NEUBER H. Theory of notch stress[M]. Virginia: USAEC Office of Technical Information, 1961.
[7]PETERSON R E. Stress concentration factors[M]. New York: John Wiley & Sons, 1974.
[8]QYLAFKU G, AZARI Z, GJONAJ M, et al. On the fatigue failure and life prediction for notched specimens[J]. Materials Science, 1998, 34(5): 604-618.
[9]YE W L, ZHU S P, NIU X P, et al. Fatigue life prediction of notched components under size effect using stress gradient-based approach[J]. International Journal of Fracture, 2022, 234(1): 249-261.
[10]SUSMEL L. The theory of critical distances: A review of its applications in fatigue[J]. Engineering Fracture Mechanics, 2008, 75(7): 1706-1724.
[11]ZHU S P, HE J C, LIAO D, et al. The effect of Notch size on critical distance and fatigue life predictions[J]. Materials & Design, 2020, 196: 109095.
[12]YAO W X. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue, 1993, 15(3): 243-246.
[13]LIAO D, ZHU S P. Energy field intensity approach for Notch fatigue analysis[J]. International Journal of Fatigue, 2019, 127: 190-202.
[14]唐俊星, 陆山. 轮盘应变疲劳寿命可靠性分析方法[J]. 推进技术, 2005, 26(4): 344-347.
TANG J X, LU S. Reliability analysis method for the strain fatigue life of a disk[J]. Journal of Propulsion Technology, 2005, 26(4): 344-347.
[15]吴炎来. 基于场强法的缺口件疲劳寿命预测及可靠性分析[D]. 成都: 电子科技大学, 2022.
WU Y L. Fatigue life prediction and reliability analysis of notched components based on field intensity approach[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[16]WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18: 293-297.
[17]由于, 陆山. 基于静强和寿命可靠性的双辐板涡轮盘/榫结构优化设计方法[J]. 航空动力学报, 2017, 32(6): 1388-1393.
YOU Y, LU S. Optimization design method for twin-web turbine disk/tenon structure based on static strength and life reliability[J]. Journal of Aerospace Power, 2017, 32(6): 1388-1393.
[18]卜英格. 典型航空铝合金结构件疲劳性能的尺寸效应实验研究[D]. 北京: 清华大学, 2012.
BU Y G. Investigation of the size effect with regard to the fatigue strength of typical al alloy mechanical elements in aeronautical structures[D]. Beijing: Tsinghua University, 2012.
[19]谢金标. 结构细节疲劳寿命分散性估计方法研究[D]. 南京: 南京航空航天大学, 2010.
XIE J B. Research on estimation method of fatigue life scatter of stractural details[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[20]李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864.
[21]杜大华, 李斌. 液体火箭发动机结构动力学设计关键技术综述[J]. 航空学报, 2023, 44(10): 027554.
DU D H, LI B. Key structural dynamic design technologies in liquid rocket engines: review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 027554.
[22]周帅, 林磊, 杜大华, 等. 液体火箭发动机对接焊管道振动疲劳性能研究[J]. 火箭推进, 2021, 47(3): 90-97.
ZHOU S, LIN L, DU D H, et al. Study on vibration fatigue of butt welded pipe of liquid rocket engine[J]. Journal of Rocket Propulsion, 2021, 47(3): 90-97.
[23]石波, 戴进, 樊根民. 冲压发动机管路断裂故障分析及结构改进[J]. 火箭推进, 2021, 47(1): 43-48.
SHI B, DAI J, FAN G M. Failure analysis and structure improvement of pipeline fracture for ramjet engine[J]. Journal of Rocket Propulsion, 2021, 47(1): 43-48.
[24]杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[25]张允涛, 宋少伟, 王珺. 随机振动疲劳试验的小裂纹扩展分析方法[J]. 火箭推进, 2021, 47(2): 68-75.
ZHANG Y T, SONG S W, WANG J. Study on analysis method of small crack growth in random vibration fatigue test[J]. Journal of Rocket Propulsion, 2021, 47(2): 68-75.
[26]液体火箭发动机管路结构振动疲劳分析规范:Q/Tm 129—2023 [S]. 西安:航天科技集团有限公司第六研究院, 2023.
[27]李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[28]DIRLIK T, BENASCIUTTI D. Dirlik and tovo-benasciutti spectral methods in vibration fatigue: A review with a historical perspective[J]. Metals, 2021, 11(9): 1333.
[29]杨茂, 陆山, 潘容, 等. 喷丸残余应力及夹杂影响小裂纹仿真概率模型[J]. 航空动力学报, 2023, 38(4): 913-920.
YANG M, LU S, PAN R, et al. Probabilistic model of small crack simulation considering shot peening residual stress and inclusion influence[J]. Journal of Aerospace Power, 2023, 38(4): 913-920.