|Table of Contents|

Evaluation method of vibration fatigue life of structures considering size effect(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
75-82
Research Field:
目次
Publishing date:

Info

Title:
Evaluation method of vibration fatigue life of structures considering size effect
Author(s):
YANG Mao SHI Hanyang WANG Jun FAN Xun
National Key Laboratory of Aerospace Liquid Propulsion, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
vibration fatigue size effect life maximum likelihood crack initiation
PACS:
V41
DOI:
10.3969/j.issn.1672-9374.2024.03.008
Abstract:
In order to improve the evaluation precision of vibration life of key structure of liquid rocket engine under vibration environment, the size effect was introduced into vibration fatigue life analysis by using crack initiation characteristic volume hypothesis and dangerous volume subdivision series model, and the vibration fatigue volume life model was put forward, and its numerical model was established. Based on the vibration test data of key structural simulators, the small-scale vibration fatigue characteristic parameters of typical materials were identified, and the life data maximum likelihood of simulation and test was used to optimize the crack initiation characteristic length. The model was verified by the vibration fatigue test of the key structure simulators. It is found that for the two simulators, the distribution of vibration life of each load order covers the test data, and the average life of the original state is within 1.5 times the dispersion band of the test, and the improved state is within 2 times the dispersion band of the test. The accuracy and applicability of the method were proved.

References:

[1] AI Y, ZHU S P, LIAO D, et al. Probabilistic modeling of fatigue life distribution and size effect of components with random defects[J]. International Journal of Fatigue, 2019, 126: 165-173.
[2]AI Y, ZHU S P, LIAO D, et al. Probabilistic modelling of Notch fatigue and size effect of components using highly stressed volume approach[J]. International Journal of Fatigue, 2019, 127: 110-119.
[3]陆山, 张鸿, 唐俊星, 等. 考虑尺寸效应的轮盘应力疲劳概率寿命分析方法[J]. 航空动力学报, 2011, 26(9): 2039-2043.
LU S, ZHANG H, TANG J X, et al. Analysis method for the stress fatigue probability life of a disk considering size effect[J]. Journal of Aerospace Power, 2011, 26(9): 2039-2043.
[4]陆山, 夏佳峰. 基于SWT模型的概率寿命分析体方法[J]. 航空工程进展, 2014, 5(2): 182-186.
LU S, XIA J F. Volume method based on the SWT model for the analysis of the probability life[J]. Advances in Aeronautical Science and Engineering, 2014, 5(2): 182-186.
[5]KUHN P, HARDRANH F. An engineering method for estimating notch-size effect in fatigue tests of steel[R]. NACA TN 2805, 1952.
[6]NEUBER H. Theory of notch stress[M]. Virginia: USAEC Office of Technical Information, 1961.
[7]PETERSON R E. Stress concentration factors[M]. New York: John Wiley & Sons, 1974.
[8]QYLAFKU G, AZARI Z, GJONAJ M, et al. On the fatigue failure and life prediction for notched specimens[J]. Materials Science, 1998, 34(5): 604-618.
[9]YE W L, ZHU S P, NIU X P, et al. Fatigue life prediction of notched components under size effect using stress gradient-based approach[J]. International Journal of Fracture, 2022, 234(1): 249-261.
[10]SUSMEL L. The theory of critical distances: A review of its applications in fatigue[J]. Engineering Fracture Mechanics, 2008, 75(7): 1706-1724.
[11]ZHU S P, HE J C, LIAO D, et al. The effect of Notch size on critical distance and fatigue life predictions[J]. Materials & Design, 2020, 196: 109095.
[12]YAO W X. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue, 1993, 15(3): 243-246.
[13]LIAO D, ZHU S P. Energy field intensity approach for Notch fatigue analysis[J]. International Journal of Fatigue, 2019, 127: 190-202.
[14]唐俊星, 陆山. 轮盘应变疲劳寿命可靠性分析方法[J]. 推进技术, 2005, 26(4): 344-347.
TANG J X, LU S. Reliability analysis method for the strain fatigue life of a disk[J]. Journal of Propulsion Technology, 2005, 26(4): 344-347.
[15]吴炎来. 基于场强法的缺口件疲劳寿命预测及可靠性分析[D]. 成都: 电子科技大学, 2022.
WU Y L. Fatigue life prediction and reliability analysis of notched components based on field intensity approach[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[16]WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18: 293-297.
[17]由于, 陆山. 基于静强和寿命可靠性的双辐板涡轮盘/榫结构优化设计方法[J]. 航空动力学报, 2017, 32(6): 1388-1393.
YOU Y, LU S. Optimization design method for twin-web turbine disk/tenon structure based on static strength and life reliability[J]. Journal of Aerospace Power, 2017, 32(6): 1388-1393.
[18]卜英格. 典型航空铝合金结构件疲劳性能的尺寸效应实验研究[D]. 北京: 清华大学, 2012.
BU Y G. Investigation of the size effect with regard to the fatigue strength of typical al alloy mechanical elements in aeronautical structures[D]. Beijing: Tsinghua University, 2012.
[19]谢金标. 结构细节疲劳寿命分散性估计方法研究[D]. 南京: 南京航空航天大学, 2010.
XIE J B. Research on estimation method of fatigue life scatter of stractural details[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[20]李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864.
[21]杜大华, 李斌. 液体火箭发动机结构动力学设计关键技术综述[J]. 航空学报, 2023, 44(10): 027554.
DU D H, LI B. Key structural dynamic design technologies in liquid rocket engines: review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 027554.
[22]周帅, 林磊, 杜大华, 等. 液体火箭发动机对接焊管道振动疲劳性能研究[J]. 火箭推进, 2021, 47(3): 90-97.
ZHOU S, LIN L, DU D H, et al. Study on vibration fatigue of butt welded pipe of liquid rocket engine[J]. Journal of Rocket Propulsion, 2021, 47(3): 90-97.
[23]石波, 戴进, 樊根民. 冲压发动机管路断裂故障分析及结构改进[J]. 火箭推进, 2021, 47(1): 43-48.
SHI B, DAI J, FAN G M. Failure analysis and structure improvement of pipeline fracture for ramjet engine[J]. Journal of Rocket Propulsion, 2021, 47(1): 43-48.
[24]杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[25]张允涛, 宋少伟, 王珺. 随机振动疲劳试验的小裂纹扩展分析方法[J]. 火箭推进, 2021, 47(2): 68-75.
ZHANG Y T, SONG S W, WANG J. Study on analysis method of small crack growth in random vibration fatigue test[J]. Journal of Rocket Propulsion, 2021, 47(2): 68-75.
[26]液体火箭发动机管路结构振动疲劳分析规范:Q/Tm 129—2023 [S]. 西安:航天科技集团有限公司第六研究院, 2023.
[27]李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[28]DIRLIK T, BENASCIUTTI D. Dirlik and tovo-benasciutti spectral methods in vibration fatigue: A review with a historical perspective[J]. Metals, 2021, 11(9): 1333.
[29]杨茂, 陆山, 潘容, 等. 喷丸残余应力及夹杂影响小裂纹仿真概率模型[J]. 航空动力学报, 2023, 38(4): 913-920.
YANG M, LU S, PAN R, et al. Probabilistic model of small crack simulation considering shot peening residual stress and inclusion influence[J]. Journal of Aerospace Power, 2023, 38(4): 913-920.

Memo

Memo:
-
Last Update: 1900-01-01