[1] 马帅, 郭健鑫, 周磊, 等. 固体火箭发动机技术发展综述[J]. 火箭推进, 2023, 49(2): 1-14.
MA S, GUO J X, ZHOU L, et al. Review on technology development of solid rocket motor[J]. Journal of Rocket Propulsion, 2023, 49(2): 1-14.
[2]胡松启, 周宴星, 刘迎吉, 等. 固体推进剂裂纹扩展研究综述[J]. 火箭推进, 2012, 38(5): 86-92.
HU S Q, ZHOU Y X, LIU Y J, et al. Studies on crack extension in solid propellant[J]. Journal of Rocket Propulsion, 2012, 38(5): 86-92.
[3]CELINA M, MINIER L, ASSINK R. Development and application of tools to characterize the oxidative degradation of AP/HTPB/Al propellants in a propellant reliability study[J]. Thermochimica Acta, 2002, 384(1/2): 343-349.
[4]孙兵晓, 常新龙, 胡成荣, 等. 固体火箭发动机密封结构随机有限元可靠性分析[J]. 火箭推进, 2008, 34(5): 22-26.
SUN B X, CHANG X L, HU C R, et al. Reliability analysis of the SRM sealing structure based on stochastic finite element method[J]. Journal of Rocket Propulsion, 2008, 34(5): 22-26.
[5]张晓军, 邢鹏涛, 朱佳佳, 等. HTPB推进剂老化性能湿热影响分析[J]. 装备环境工程, 2022, 19(2): 45-50.
ZHANG X J, XING P T, ZHU J J, et al. Analysis of the effect of humidity and heat on aging performance of HTPB propellant[J]. Equipment Environmental Engineering, 2022, 19(2): 45-50.
[6]霍文龙, 谢丽娜, 孙雪莹, 等. 固体推进剂老化过程影响因素及化学反应机理研究进展[J]. 装备环境工程, 2023, 20(10): 64-76.
HUO W L, XIE L N, SUN X Y, et al. Affecting factors and chemical reaction mechanism of composite solid propellants during the aging process[J]. Equipment Environmental Engineering, 2023, 20(10): 64-76.
[7]赵永俊, 张兴高, 张炜, 等. 国外固体推进剂及其黏结界面贮存老化研究进展[J]. 火箭推进, 2008, 34(3): 35-38.
ZHAO Y J, ZHANG X G, ZHANG W, et al. Review on the aging property of solid propellant and bonding interface abroad[J]. Journal of Rocket Propulsion, 2008, 34(3): 35-38.
[8]中国航天科工集团公司.复合固体推进剂高温加速老化试验方法: QJ 2328A—2005[S].北京:国防科学技术工业委员会,2005.
[9]程吉明, 李进贤, 侯晓, 等. HTPB推进剂热力耦合老化力学性能研究[J]. 推进技术, 2016, 37(10): 1984-1990.
CHENG J M, LI J X, HOU X, et al. Aging mechanical properties of HTPB propellant under thermal-mechanical coupled condition[J]. Journal of Propulsion Technology, 2016, 37(10): 1984-1990.
[10]曾毅, 黄薇, 陈家兴, 等. HTPB推进剂热力耦合加速老化细观损伤机理分析[J]. 含能材料, 2024, 32(2): 162-174.
ZENG Y, HUANG W, CHEN J X, et al. Analysis of mesoscopic damage mechanism of HTPB propellant under thermo-mechanical coupled accelerated aging[J]. Chinese Journal of Energetic Materials, 2024, 32(2): 162-174.
[11]张兴高. HTPB推进剂贮存老化特性及寿命预估研究[D]. 长沙: 国防科学技术大学, 2009.
ZHANG X G. Study on the aging properties and storage life prediction of htpb propellant[D]. Changsha: National University of Defense Technology, 2009.
[12]LI H, WEI J, ZHANG Y N, et al. GO/HTPB composite liner for anti-migration of small molecules[J]. Defence Technology, 2023, 22: 156-165.
[13]李彦荣, 祝世杰, 刘学, 等. 高氯酸铵热分解机理研究进展[J]. 化学推进剂与高分子材料, 2015, 13(1): 32-37.
LI Y R, ZHU S J, LIU X, et al. Research progress in thermal decomposition mechanism of ammonium perchlorate[J]. Chemical Propellants & Polymeric Materials, 2015, 13(1): 32-37.
[14]LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX[J]. Defence Technology, 2017, 13(6): 422-427.
[15]GUILLORY W A, KING M. Thermal decomposition of ammonium perchlorate[J]. AIAA Journal, 1970, 8(6): 1134-1136.
[16]池旭辉, 彭松, 赵程远, 等. 复合固体推进剂高温加速试验理论与方法(1): Arrhenius方程的适用性[J]. 含能材料, 2022, 30(8): 853-860.
CHI X H, PENG S, ZHAO C Y, et al. Theories and methodology of high temperature accelerated test for composite solid propellants(Ⅰ): The applicability of Arrhenius equation[J]. Chinese Journal of Energetic Materials, 2022, 30(8): 853-860.
[17]LU X, CHEN X, WANG Y S, et al. Molecular dynamics simulation of gas transport in amorphous polyiso-prene[EB/OL]. [2024-01-02]. https://en.cnki.com.cn/Article_en/CJFDTotal-WLHX201610018.htm, 2016.
[18]张昊, 彭松, 庞爱民, 等. NEPE推进剂力学性能与化学安定性关联老化行为及机理[J]. 推进技术, 2007, 28(3): 327-332.
ZHANG H, PENG S, PANG A M, et al. Coupling aging behaviors and mechanism between mechanical properties and chemical stability of NEPE propellant[J]. Journal of Propulsion Technology, 2007, 28(3): 327-332.