|Table of Contents|

Development progress and key technologies of nuclear thermal rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
1-13
Research Field:
目次
Publishing date:

Info

Title:
Development progress and key technologies of nuclear thermal rocket engine
Author(s):
MA Xiaoqiu1 XIE Jiachun2
1.Laboratory of Science and Technology on Cryogenic Liquid Propulsion,Beijing Aerospace Propulsion Institute, Beijing 100076, China; 2.China Institute of Atomic Energy, Beijing 102413, China
Keywords:
nuclear thermal rocket engine specific impulse reactor key technology fuel element
PACS:
V434
DOI:
10.3969/j.issn.1672-9374.2024.04.001
Abstract:
The basic principle of nuclear thermal rocket engine was introduced, the development process of nuclear thermal rocket engines in the United States and Russia(Soviet Union)was reviewed. In the early development process of nuclear thermal rocket engines in the United States, research was mainly conducted using the whole engine test mode. During the Rover/NERVA period, more than 20 reactors were established and a large amount of test data was obtained, which still plays an important role in the research of nuclear thermal rocket engines in the United States even today. Subsequently, research on particle bed reactors(PBR)was conducted in the SNTP program with the goal of improving reactor performance. An economically affordable approach was proposed in the NCPS program, and the fuel elements were studied by using electric heating simulation method, which can reduce costs and difficulty. In terms of mission requirements, the DRA5.0 manned Mars program and the DRACO program have been proposed for manned spaceflight and Cislunar activities. Russia(Soviet Union)has conducted research on nuclear thermal engines at the same time with US, mainly focusing on reactor fuel element technology. They have developed twisted strip high-temperature carbide fuel elements, with parameter levels highest in the world. By summarizing the development trends of nuclear thermal rocket engines in the United States and Russia, this paper analyzes the key technologies of nuclear thermal rocket engine reactors, and proposes development suggestions for future research on nuclear thermal rocket engines in China.

References:

[1] ДЕМЯНКО Ю Г. 核火箭发动机[M]. 郑官庆, 王江, 黄丽华, 等, 译. 北京:中国原子能科学研究院, 2005.
[2]韩鸿硕, 陈杰. 21世纪国外深空探测发展计划及进展[J]. 航天器工程, 2008, 17(3): 1-22.
HAN H S, CHEN J. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3): 1-22.
[3]张梦龙, 张悦, 王宝和. 空间核推进系统综述与展望[J]. 兵器装备工程学报, 2018, 39(9): 96-100.
ZHANG M L, ZHANG Y, WANG B H. Review and prospect of space nuclear propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 96-100.
[4]刘国球,任汉芬,朱昌宁,等. 液体火箭发动机原理[M]. 北京:中国宇航出版社,1993.
[5]洪刚, 娄振, 郑孟伟, 等. 载人核热火箭登陆火星方案研究[J]. 载人航天, 2015, 21(6): 611-617.
HONG G, LOU Z, ZHENG M W, et al. Study on nuclear thermal rocket for manned Mars exploration[J]. Manned Spaceflight, 2015, 21(6): 611-617.
[6]洪刚, 戚峰, 王建明, 等. 载人登陆火星任务核热推进系统方案研究[J]. 载人航天, 2018, 24(1): 102-106.
HONG G, QI F, WANG J M, et al. Nuclear thermal propulsion system design for manned Mars mission[J]. Manned Spaceflight, 2018, 24(1): 102-106.
[7]BOROWSKI S, MCCURDY D, PACKARD T. “7-launch” NTR space transportation option for NASA's Mars design reference architecture(DRA)5.0[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2009.
[8]杨彬, 唐生勇, 李爽, 等. 核热推进载人火星探测方案设计[J]. 宇航学报, 2018, 39(11): 1197-1208.
YANG B, TANG S Y, LI S, et al. Manned Mars exploration concept using nuclear thermal propulsion system[J]. Journal of Astronautics, 2018, 39(11): 1197-1208.
[9]BOROWSKI S K, MCCURDY D R, BURKE L M. The nuclear thermal propulsion stage(NTPS): a key space asset for human exploration and commercial missions to the moon[C]//AIAA SPACE 2013 Conference and Exposition. Reston, Virginia: AIAA, 2013.
[10]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[11]HAROLD P. Nuclear thermal propulsion ground test history[C]//2014 Nuclear Emerging Technologies for Space Conference. [S.l.]: Stennis Space Center, 2014.
[12]SIEVERS R, LIVINGSTON J, PIERCE B. NERVA propulsion system design considerations[C]//26th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1990.
[13]BLACK D, GUNN S. A technical summary of engine and reactor subsystem design performance during the NERVA program[C]//Conference on Advanced SEI Technologies. Reston, Virginia: AIAA, 1991.
[14]LACY D D. Nuclear rocket simulator tests facility and research apparatus description: NASA TM X-52043[R]. Cleveland, Ohio: Lewis Research Center, 1964.
[15]REARDON J E. Full-scale nuclear rocket cold-flow test facility and research apparatus: NASA TM X-1763[R]. Cleveland, Ohio: Lewis Research Center, 1969.
[16]SANDLER S, FEDDERSEN R. Particle bed reactor engine technology[C]//Space Programs and Technologies Conference. Reston, Virginia: AIAA, 1992.
[17]WALTON L, SAPYTA J. SNTP program reactor design[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[18]WALTON L, ALES M. SNTP program fuel element design[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[19]HASLETT R A. Space nuclear thermal propulsion program final report: PL-TR-95-1064[R]. Kirtland: Phillips Laboratory, 1995.
[20]DRAKE B G, HOFFMAN S J, BEATY D W. Human exploration of Mars, Design Reference Architecture 5.0[C]//2010 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2010.
[21]HOWE S. Identification of archived design information for small class nuclear rockets[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2005.
[22]SCHNITZLER B, BOROWSKI S, FITTJE J. A 25 000-lbf thrust engine options based on the small nuclear rocket engine design[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2009.
[23]HOUTS M, BOROWSKI S, GEORGE J, et al. Affordable development of a nuclear cryogenic propulsion stage[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[24]EMRICH W, KIRK D. Design considerations for the nuclear thermal rocket element environmental simulator(NTREES)[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[25]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[26]BOROWSKI S K, SEFCIK R J, FITTJE J J, et al. Affordable development and demonstration of a small NTR engine and stage: a preliminary NASA, DOE and industry assessment[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2015.
[27]杨开, 米鑫. 美国2022财年航天运输系统发展新动向[J]. 国际太空, 2021(8): 31-35.
YANG K, MI X. New development trends of American space transportation system in FY 2022[J]. Space International, 2021(8): 31-35.
[28]郭筱曦. 美国空间核动力近期政策与技术发展分析[J]. 国际太空, 2021(8): 4-8.
GUO X X. Analysis of recent policy and technical development of space nuclear power in the United States[J]. Space International, 2021(8): 4-8.
[29]Sierra Space Corporation. Sierra space provides integration services for new nuclear propulsion system as part of darpa's draco program[EB/OL].[2023-12-02]. https://www.sierraspace.com/newsroom/press-releases/ sierra-space-provides-integration-services-for-new-nuclear-propulsion-system-as-part-of-darpas-draco-program.
[30]USNC. USNC-tech team wins contract to develop nuclear thermal propulsion system for NASA[EB/OL].[2023-12-02]. https://www.usnc.com/usnc-tech-nuclear-thermal-propulsion-award.
[31]Encyclopedia Astronautica. Russian Mars propulsion-nuclear thermal[EB/OL].[2023-12-02]. http://www.astronautix.com/r/russianmarsuclearthermal.html.
[32]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[33]张泽旭, 郑博, 周浩, 等. 载人小行星探测任务总体方案研究[J]. 深空探测学报, 2015, 2(3): 229-235.
ZHANG Z X, ZHENG B, ZHOU H, et al. Overall scheme of manned asteroid exploration mission[J]. Journal of Deep Space Exploration, 2015, 2(3): 229-235.
[34]王小军, 汪小卫. 载人火星探测任务构架及其航天运输系统研究[J]. 中国航天, 2021(7): 8-14.
WANG X J, WANG X W. Human Mars exploration mission architecture and corresponding space transportation system[J]. Aerospace China, 2021(7): 8-14.
[35]朱岩, 马元, 南向谊, 等. 大推力核热火箭运载器及动力特性分析[J]. 载人航天, 2018, 24(3): 388-393.
ZHU Y, MA Y, NAN X Y, et al. Characteristic analysis of nuclear thermal rocket launcher and high thrust engine[J]. Manned Spaceflight, 2018, 24(3): 388-393.
[36]王浩泽, 左安军, 霍红磊, 等. 110 kN核热火箭发动机系统方案选取与参数优化研究[J]. 原子能科学技术, 2019, 53(1): 30-37.
WANG H Z, ZUO A J, HUO H L, et al. System design selection and parametric optimization analysis of 110 kN nuclear thermal rocket engine[J]. Atomic Energy Science and Technology, 2019, 53(1): 30-37.
[37]李子亮, 王浩泽, 蔡震宇, 等. 100吨级核热火箭发动机喷管流动传热特性数值分析[J]. 载人航天, 2018, 24(6): 772-776.
LI Z L, WANG H Z, CAI Z Y, et al. Numerical analysis of flow and heat transfer characteristics of 100 ton nuclear thermal rocket engine nozzle[J]. Manned Spaceflight, 2018, 24(6): 772-776.
[38]李子亮, 徐凯. 110 kN核热发动机推力室非平衡流动传热数值模拟研究[J]. 载人航天, 2020, 26(5): 618-623.
LI Z L, XU K. CFD simulation of non-equilibrium flow and heat transfer in thrust chamber of a 110 kN nuclear heat engine[J]. Manned Spaceflight, 2020, 26(5): 618-623.
[39]赵润喆, 霍红磊. 低浓铀核热火箭发动机SCCTE堆芯物理特性初步研究[J]. 原子能科学技术, 2021, 55(S02): 221-227.
ZHAO R Z, HUO H L. Preliminary study on neutronic characteristic of LEU NTR reactor SCCTE core[J]. Atomic Energy Science and Technology, 2021, 55(S02): 221-227.
[40]房玉良, 秦浩, 王成龙, 等. 高温、高流速氢气在圆管内流动换热特性研究[J]. 原子能科学技术, 2020, 54(10): 1762-1770.
FANG Y L, QIN H, WANG C L, et al. Heat transfer performance of high temperature and high velocity hydrogen flow inside circle tube[J]. Atomic Energy Science and Technology, 2020, 54(10): 1762-1770.
[41]房玉良, 王成龙, 田文喜, 等. 高温氢工质热物理性质计算分析[J]. 原子能科学技术, 2021, 55(8): 1411-1419.
FANG Y L, WANG C L, TIAN W X, et al. Analysis of thermophysical property of high temperature hydrogen[J]. Atomic Energy Science and Technology, 2021, 55(8): 1411-1419.
[42]POWELL J, LUDEWIG H, HORN F. The liquid annular reactor system propulsion[R]. New York, USA: Brookhaven National Laboratory, 1991.
[43]房玉良, 刘林, 孙海亮, 等. 核热推进反应堆燃料元件发展概述[J]. 宇航总体技术, 2020, 4(1): 63-70.
FANG Y L, LIU L, SUN H L, et al. Development of fuel elements in nuclear thermal propulsion system[J]. Astronautical Systems Engineering Technology, 2020, 4(1): 63-70.
[44]杨玉新, 任全彬, 段艳娟, 等. 美俄核热推进技术发展现状与启示[J]. 固体火箭技术, 2023, 46(3): 399-409.
YANG Y X, REN Q B, DUAN Y J, et al. Development status and prospect of nuclear thermal propulsion technology in US and Russia[J]. Journal of Solid Rocket Technology, 2023, 46(3): 399-409.
[45]VADIM Z, VLADIMIR P. Russian nuclear rocket engine design for Mars exploration[J]. Tsinghua Science and Technology, 2007, 12(3): 256-260.
[46]BRENGLE R, HARTY R, BHATTACHARYYA S. The promise and challenges of cermet fueled nuclear thermal propulsion reactors[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[47]BULMAN M, CULVER D, MCILWAIN M, et al. US/CIS integrated NTRE[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[48]BLACK D, GUNN S. A technical summary of engine and reactor subsystem design performance during the NERVA program[C]//Conference on Advanced SEI Technologies. Reston, Virginia: AIAA, 1991.
[49]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[50]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[51]李平岐, 陈海鹏, 洪刚, 等. 载人登火运载器核热推进末级总体方案初步研究[J]. 国际太空, 2017(9): 15-21.
LI P Q, CHEN H P, HONG G, et al. Preliminary study on manned Mars landing vehicle with nuclear thermal propulsion system[J]. Space International, 2017(9): 15-21.

Memo

Memo:
-
Last Update: 1900-01-01