[1] BOROWSKI S, CORBAN R, MCGUIRE M, et al. Nuclear thermal rocket/vehicle design options for future NASA missions to the moon and Mars[C]//Space Programs and Technologies Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[2]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[3]HOWE S. Identification of archived design information for small class nuclear rockets[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2005.
[4]EMRICH W, KIRK D. Design considerations for the nuclear thermal rocket element environmental simulator(NTREES)[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2006.
[5]DARPA. NASA tap Lockheed Martin to design, build DRACO nuclear rocket for deep space missions[EB/OL]. https://www.breakingdefense.com/2023/07/darpa-nasa-tap-lockheed-martin-to-design-build-draco-nuclear-rocket-for-deep-space-missions, 2023.
[6]FINSETH J. Rover nuclear rocket engine program: Overview of rover engine tests[EB/OL]. https://www.semanticscholar.org/paper/Rover-nuclear-rocket-engine-program%3A-Overview-of-Finseth/bf743ca9a2a6060b91b2
d05c6635ee34981ee14d, 1991.
[7]SCHNITZLER B, BOROWSKI S. Small fast spectrum reactor designs suitable for direct nuclear thermal propul-sion[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[8]PEERY S D, PARSLEY R C, ANGHAIE S, et al. XNR2000:a near term nuclear thermal rocket concept[C]//AIP Conference Proceedings. Albuquerque, New Mexico:AIP, 1993.
[9]POWELL J, PANIAGUA J, MAISE G, et al. MITEE:an ultra lightweight nuclear engine for new and unique planetary science and exploration missions[C]//49th International Astronautical Congress.Melbourne: IAF, 1998.
[10]霍红磊, 安伟健, 解家春, 等. CERMET-SNRE堆芯物理计算分析[J]. 原子能科学技术, 2016, 50(12): 2150-2156.
HUO H L, AN W J, XIE J C, et al. Core physics calculation and analysis for CERMET-SNRE[J]. Atomic Energy Science and Technology, 2016, 50(12): 2150-2156.
[11]NAM S H, VENNERI P, CHOI J, et al. Preliminary design study of an innovative high-performance nuclear thermal rocket utilizing LEU fuel[EB/OL]. https://www.semanticscholar.org/paper/Preliminary-Design-Study-of-an-Innovative-Nuclear-Nam-Venneri/5ab8cb372d9f0900a73ea281a77f566a25e30958, 2015.
[12]VENNERI P, DEASON W, HUSEMEYER P, et al. Design of a tungsten cermet LEU-NTR[C]//Nuclear Emerging Technologies for Space 2014. Washington D C: NASA, 2014.
[13]EADES M, DEASON W, PATEL V. SCCTE: an LEU NTP concept with tungsten cermet fuel[R]. Idaho Falls, ID:Idaho National Laboratory, 2015.
[14]PATEL V, DEASON W, EADES M. Center for space nuclear research(CSNR)NTP design team report[R]. Idaho Falls, ID:Idaho National Laboratory, 2015.
[15]HUSEMEYER P J, PATEL V, VENNERI P F, et al. CSNR space propulsion optimization code: SPOC[C]//Nuclear and Emerging Technologies for Space. Albuquerque, New Mexico: [s.n.],2015.
[16]KIM Y, PAOLO V. A point design for a LEU composite NTP system: superb use of low enriched uranium(SULEU)[C]//Nuclear and Emerging Technologies for Space. [S.l.]: American Nuclear Society, 2016.
[17]VENNERI P, KIM Y. Advancements in the development of low enriched uranium nuclear thermal rockets[J]. Energy Procedia, 2017, 131: 53-60.
[18]ROMNES C J, CHAVEZ D E, MARTINEZ B J, et al. Low enriched uranium nuclear thermal rocket design inspired by the space nuclear thermal propulsion project[C]//Nuclear and Emerging Technologies for Space. [S.l.]:American Nuclear Society, 2019.
[19]BENENSKY K, WANG M J, NIEMINEN J, et al. Preliminary analysis of low-enriched uranium(LEU)ultra high temperature nuclear thermal rockets capable of 1 100 s specific impulse[C]//Nuclear and Emerging Technologies for Space.[S.l.]:American Nuclear Society Huntsville, 2016.
[20]LIN C S, YOUINOU G J. Design and analysis of a 250 MW plate-fuel reactor for nuclear thermal propulsion[C]//Nuclear and Emerging Technologies for Space. [S.l.]:American Nuclear Society, 2020.
[21]POSTON D I. Design comparison of nuclear thermal rocket concepts[C]//Nuclear and Emerging Technologies for Space. [S.l.]:American Nuclear Society, 2018.
[22]赵润喆, 霍红磊, 赵爱虎, 等. 低浓铀核热火箭堆芯研究设计进展[J]. 东北电力大学学报, 2021, 41(3): 78-84.
ZHAO R Z, HUO H L, ZHAO A H, et al. Research and design progress of low enriched uranium nuclear thermal rocket core[J]. Journal of Northeast Electric Power University, 2021, 41(3): 78-84.
[23]赵润喆, 霍红磊. 低浓铀核热火箭发动机SCCTE堆芯物理特性初步研究[J]. 原子能科学技术, 2021, 55(Sup.2): 221-227.
ZHAO R Z, HUO H L. Preliminary study on neutronic characteristic of LEU NTR reactor SCCTE core[J]. Atomic Energy Science and Technology, 2021, 55(S2): 221-227.
[24]BRIDGES J M, BROWN W S, CALL D W.Evaluation of passive re-entry approach[R]. WANL-TNR-209, 1965.
[25]HUSSEY C C, WOIKE O G, ZWICK J. Conceptual mechanical design for a fast energy spectrum nuclear rocket engine[EB/OL]. https://www.semanticscholar.org/paper/Conceptual-Mechanical-Design-for-a-Fast-Energy- Hussey-Woike/f8dea748d8597e550d3760cb7e2491d1ba 9a34b4, 1965.
[26]TUCKER W C, CHOWDHURY P, ABBOTT L J, et al. Toward an in-depth material model for cermet nuclear thermal rocket fuel elements[J]. Nuclear Technology, 2021, 207(6): 825-835.