|Table of Contents|

Review on thermoelectric conversion technology for space nuclear power(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
42-54
Research Field:
目次
Publishing date:

Info

Title:
Review on thermoelectric conversion technology for space nuclear power
Author(s):
CHEN Jinli12 XUE Xiang12 WANG Yuanding12 WANG Haoming12 DU Lei12 LIN Qingguo12
1.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China; 2.Shanghai Institute of Space Propulsion, Shanghai 201112, China
Keywords:
space nuclear power thermoelectric conversion static conversion dynamic conversion performance improvement
PACS:
V439.5
DOI:
10.3969/j.issn.1672-9374.2024.04.004
Abstract:
Space thermoelectric conversion technology is one of the key technologies of space nuclear power. The conversion system covers watt level to megawatt level, which can meet the requirements of space power supply for various space missions. Therefore, it is crucial to develop the space thermoelectric conversion technology. The basic principles and domestic and overseas research progress of the thermoelectric conversion technology for space nuclear power were presented, including thermocouple, thermionics, alkali metal thermal to electric converter(AMTEC), magnetohydrodynamic, thermophotovoltaic, Rankine cycle, Stirling cycle and Brayton cycle. The technical difficulties in space application of various thermoelectric conversion technologies were summarized. Meanwhile, the development direction of thermoelectric conversion technology to realize the basic requirements of long-life and maintenance-free was proposed. Finally, according to the power requirements of different space nuclear power, a leading scheme of thermoelectric conversion technology was put forward. When the power requirement of space nuclear power is less than 100 kWe, it is recommended to use static thermoelectric conversion technologies such as thermocouple conversion and thermionic conversion. When the power requirement exceeds 100 kWe, dynamic thermoelectric conversion technologies such as the Brayton cycle should be used.

References:

[1] 刘世超, 李阳, 吴春瑜, 等. 空间核动力平台电力管理系统的设计[J]. 上海航天, 2019, 36(6): 134-140.
LIU S C, LI Y, WU C Y, et al. Design of power management system at space nuclear power platform[J]. Aerospace Shanghai(Chinese & English), 2019, 36(6): 134-140.
[2]李国欣. 航天器电源系统技术概论[M]. 北京: 中国宇航出版社, 2008.
[3]杨继材. 空间核电源中的热电转换[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017.
[4]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[5]DATAS A, MART A. Thermophotovoltaic energy in space applications: review and future potential[J]. Solar Energy Materials and Solar Cells, 2017, 161: 285-296.
[6]EL-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion[J]. Energy Conversion and Management, 2007, 49(3): 402-411.
[7]HARADA N, KIEN L C, HISHIKAWA M. Basic studies on closed cycle MHD power generation system for space application[C]//35th AIAA Plasmadynamics and Lasers Conference. Reston, Virginia: AIAA, 2004.
[8]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[9]柏胜强, 廖锦城, 夏绪贵, 等. 同位素温差电池用高效热电转换材料与器件研究进展[J]. 深空探测学报, 2020, 7(6): 525-535.
BAI S Q, LIAO J C, XIA X G, et al. Research progress of thermoelectric materials and devices for radioisotope thermoelectric generators[J]. Journal of Deep Space Exploration, 2020, 7(6): 525-535.
[10]马世俊. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019.
[11]吴伟仁, 王倩, 任保国, 等. 放射性同位素热源/电源在航天任务中的应用[J]. 航天器工程, 2013, 22(2): 1-6.
WU W R, WANG Q, REN B G, et al. Application of RHU/RTG in space missions[J]. Spacecraft Engineering, 2013, 22(2): 1-6.
[12]EL-GENK M S, SABER H H. Radioisotope power systems with skutterudite-based thermoelectric converters[J]. Space Technology and Applications International Forum-Staif, 2005, 746(1): 485-494.
[13]HOLGATE T C, BENNETT R, HAMMEL T, et al. Increasing the efficiency of the multi-mission radioisotope thermoelectric generator[J]. Journal of Electronic Materials, 2015, 44(6): 1814-1821.
[14]蔡善钰, 何舜尧. 空间放射性同位素电池发展回顾和新世纪应用前景[J]. 核科学与工程, 2004, 24(2): 97-104.
CAI S Y, HE S Y. Retrospection of development for radioisotope power systems in space and its prospect of application in new century[J]. Nuclear Science and Engineering, 2004, 24(2): 97-104.
[15]宋馨, 陈向东, 雷英俊, 等. 嫦娥四号着陆器月夜热电联供系统设计与验证[J]. 航天器工程, 2019, 28(4): 65-69.
SONG X, CHEN X D, LEI Y J, et al. Design and verification of heat and electricity cogeneration system in moon night of Chang'e-4 lander[J]. Spacecraft Engineering, 2019, 28(4): 65-69.
[16]XING Y F, LIU R H, SUN Y Y, et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability[J]. Journal of Materials Chemistry A, 2018, 6(40): 19470-19478.
[17]ROGL G, GRYTSIV A, ROGL P, et al. Multifilled nanocrystalline p-type didymium-skutterudites with ZT>1.2[J]. Intermetallics, 2010, 18(12): 2435-2444.
[18]LIU W, BAI S. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics, 2019(3): 321-336.
[19]尹德状. MW级热离子转换空间核能系统性能分析与优化[D]. 哈尔滨: 哈尔滨工业大学, 2020.
YIN D Z. Performance analysis and optimization of MW thermal ion conversion space nuclear power system[D]. Harbin: Harbin Institute of Technology, 2020.
[20]凯贝舍夫. 空间核动力装置中的热离子发射[M]. 北京: 中国原子能出版社, 2016.
[21]KOROTEEV A S, OSHEV Y A, POPOV S A, et al. Nuclear power propulsion system for spacecraft[J]. Thermal Engineering, 2015, 62(13): 971-980.
[22]OFFICE S F F. SPACE-R thermionic space nuclear power system: design and technology demonstration[R]. DOE/SF/19441-T4.
[23]PRUSCHEK R, GROSS F, STEHLE H, et al. Incore-thermionic-reactor ITR[R]. AED-CONF-71-100-17.
[24]曹绳全, 杨继材. 反应堆热离子转换器[J]. 核科学与工程, 1984, 4(3): 227-232.
CAO S Q, YANG J C. Thermoionic converter for space reactor[J]. Chinese Journal of Nuclear Science and Engineering, 1984, 4(3): 227-232.
[25]钟武烨, 赵守智, 郑剑平, 等. 空间热离子能量转换技术发展综述[J]. 深空探测学报, 2020, 7(1): 47-60.
ZHONG W Y, ZHAO S Z, ZHENG J P, et al. A review of technology development of thermionic energy conversion for space application[J]. Journal of Deep Space Exploration, 2020, 7(1): 47-60.
[26]郑光华. 太阳能热电子发电的实验与理论基础研究[D]. 杭州: 浙江大学, 2019.
ZHENG G H. Experimental and theoretical research on solar thermal electron power generation[D].Hangzhou: Zhejiang University, 2019.
[27]张怡晨, 胡宇鹏, 王泽, 等. 基于AMTEC的空间核反应堆电源热力学性能分析[J]. 深空探测学报, 2021, 8(2): 205-212.
ZHANG Y C, HU Y P, WANG Z, et al. Thermodynamic analysis of space nuclear power system based on AMTEC[J]. Journal of Deep Space Exploration, 2021, 8(2): 205-212.
[28]马明阳, 谢奇林, 梁文峰, 等. 用于空间堆的碱金属热电转换技术研究[J]. 航天器工程, 2018, 27(6): 102-111.
MA M Y, XIE Q L, LIANG W F, et al. Technical research of alkali metal thermo-to-electric conversion for space reactors[J]. Spacecraft Engineering, 2018, 27(6): 102-111.
[29]SIEVERS R, PANTOLIN J, HUANG C D. Advanced AMTEC radioisotope power systems for deep space applications[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit. Reston, Virginia: AIAA, 2000.
[30]张来福. 钠钾工质碱金属热电转换器的基础研究[D]. 北京: 中国科学院电工研究所, 2002.
ZHANG L F. Basic research on alkali metal thermoelectric converter with sodium and potassium working medium[D].Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences, 2002.
[31]KALANDARISHVILI A G. Working medium circuit for alkali metal thermal-to-electric converters(AMTEC)[C]//Energy Conversion Engineering Conference. New York: [s.n.], 1996.
[32]LYSENKO G P. Lithium AMTEC with gas-diffusion cathode[C]//Energy Conversion Engineering Conference. New York: [s.n.], 1996.
[33]EL-GENK M S, TOURNIER J M P. “SAIRS”: scalable amtec integrated reactor space power system[J]. Progress in Nuclear Energy, 2004, 45(1): 25-69.
[34]MERRILL J M, SCHULLER M, HUANG L M. Vacuum testing of high efficiency multi-base tube AMTEC cells[C]//AIP Conference. Albuquerque, New Mexico: AIP, 1998.
[35]WU S Y, XIAO L, CAO Y D. A review on advances in alkali metal thermal to electric converters(AMTECs)[J]. International Journal of Energy Research, 2009, 33(10): 868-892.
[36]LU X C, LI G S, KIM J Y, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage[J]. Nature Communications, 2014, 5: 4578.
[37]唐路, 夏琦, 刘保林, 等. 脉冲磁流体发电技术研究进展[J]. 推进技术, 2022, 43(8): 26-44.
TANG L, XIA Q, LIU B L, et al. Research progress of pulsed MHD power generation technology[J]. Journal of Propulsion Technology, 2022, 43(8): 26-44.
[38]LITCHFORD R J, HARADA N. Multi-MW closed cycle MHD nuclear space power via nonequilibrium He/Xe working plasma[C]//Nuclear and Emerging Technologies for Space 2011. Albuquerque, NM: [s.n.], 2011.
[39]王志鹏, 吉宇, 石磊. 空间核能磁流体发电系统性能分析及参数优化[J]. 原子能科学技术, 2023, 57(2): 284-293.
WANG Z P, JI Y, SHI L. Performance analysis and parametric optimization of space nuclear power system combined with MHD power generation[J]. Atomic Energy Science and Technology, 2023, 57(2): 284-293.
[40]刘飞标, 朱安文, 唐玉华. 磁流体发电系统在空间电源中的应用研究[J]. 航天器工程, 2015, 24(1): 111-119.
LIU F B, ZHU A W, TANG Y H. Research on MHD power generation system in space electrical power application[J]. Spacecraft Engineering, 2015, 24(1): 111-119.
[41]HOLMAN R, WAY S. Exploring a closed Brayton cycle MHD power system applying NERVA reactor technology[C]//7th Annual Meeting and Technical Display. Reston, Virginia: AIAA, 1970.
[42]LITCHFORD R, BITTEKER L, JONES J. Prospects for nuclear electric propulsion using closed cycle magnetohydrodynamic energy conversion[C]//39th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2001.
[43]周倩倩. 磁流体发电技术浅析[J]. 可持续发展, 2018, 293: 25-27.
ZHOU Q Q. Analysis of magnetic fluid power generation technology[J]. Sustainable Development, 2018, 293:25-27.
[44]苏山河, 付彤, 王远, 等. 新型能量转换微器件的热力学特性及研究进展[J]. 厦门大学学报(自然科学版), 2021, 60(3): 509-519.
SU S H, FU T, WANG Y, et al. Thermodynamic properties and research progress of novel energy conversion micro-devices[J]. Journal of Xiamen University(Natural Science), 2021, 60(3): 509-519.
[45]SCHWEDE J W, BARGATIN I, RILEY D C, et al. Photon-enhanced thermionic emission for solar concentrator systems[J]. Nature Materials, 2010, 9(9): 762-767.
[46]SCHOCK A, OR C T, KUMAR V. Modified design of radioisotope thermophotovoltaic generator to mitigate adverse effect of measured cell voltage[C]//31st Intersociety Energy Conversion Engineering Conference. Washington, D C: [s.n.], 1996.
[47]WILT D, WEHRER R, PALMISIANO M, et al. Monolithic interconnected modules(MIMs)for thermophotovoltaic energy conversion[J]. Semiconductor Science and Technology, 2003, 18(5): S209-S215.
[48]WILT D, CHUBB D, WOLFORD D, et al. Thermophotovoltaics for space power applications[C]//AIP Conference. Madrid: AIP, 2007.
[49]STRAUCH J E, KLEIN A, CHARLES P, et al. General atomics radioisotope fueled thermophotovoltaic power systems for space applications[C]//13th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2015.
[50]贺峦轩. 同位素热光伏电池物理设计[D]. 兰州: 兰州大学, 2021.
HE L X. Physical design of isotope thermophotovoltaic cell[D]. Lanzhou: Lanzhou University, 2021.
[51]张震. 空间核动力金属朗肯循环动态热电转换系统仿真分析及优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG Z. Simulation analysis and optimization of dynamic thermoelectric conversion system of space nuclear power metal Rankine cycle[D].Harbin: Harbin Institute of Technology, 2021.
[52]CATALDO R L, BENNETT G L. U.S. space radioisotope power systems and applications: past, present and future[R]. E-18060.
[53]BEVARD B B. Technology development program for an advanced potassium Rankine power conversion system compatible with several space reactor designs[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2003.
[54]YODER J, CARBAJO J J, MURPHY R W, et al. Technology development program for an advanced potassium Rankine power conversion system compatible with several space reactor designs[R]. ORNL/TM-2004/214.
[55]LONGHURST G R, SCHNITZLER B G, PARKS B T. Multi-megawatt power system trade study[C]//Space Technology and Application International Forum: [s.n.], 2002, 608: 1075-1083.
[56]李华琪, 江新标, 陈立新, 等. 空间堆堆芯热管蒸气流动计算方法研究[J]. 核动力工程, 2014, 35(6): 37-40.
LI H Q, JIANG X B, CHEN L X, et al. Calculation method for vapor flow in space nuclear reactor heat pipe[J]. Nuclear Power Engineering, 2014, 35(6): 37-40.
[57]刘秀婷, 张昊春, 尹德状, 等. 基于液态金属朗肯循环的空间双模式核热推进系统性能分析[J]. 热科学与技术, 2020, 19(5): 444-450.
LIU X T, ZHANG H C, YIN D Z, et al. Performance of space dual-mode nuclear thermal propulsion system based on liquid metal Rankine cycle[J]. Journal of Thermal Science and Technology, 2020, 19(5): 444-450.
[58]RICHARD T. LAHEY J, DHIR V. Research in support of the use of Rankine cycle energy conversion systems for space power and propulsion[R]. NASA/CR-2004-213142.
[59]张昊春, 冯致远, 蔡书宜, 等. 空间核动力装置斯特林转换系统的热力学性能优化分析[J]. 核动力工程, 2016, 37(3): 146-151.
ZHANG H C, FENG Z Y, CAI S Y, et al. Optimizing analysis of thermodynamic performance optimizing analysis of stirling conversion system for space nuclear power installation[J]. Nuclear Power Engineering, 2016, 37(3): 146-151.
[60]BRIGGS M, GIBSON M, GENG S, et al. Development status of the fission power system technology demonstration unit[C]//10th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2012.
[61]MASON L S, SCHREIBER J G. A historical review of Brayton and Stirling power conversion technologies for space applications[R]. NASA/TM-2007-214976.
[62]ORITI S M. Advanced Stirling radioisotope generator engineering unit2(ASRG EU2)final assembly[C]//Nuclear and Emerging Technologies for Space 2015. Albuquerque, NM: [s.n.], 2015.
[63]陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6): 1-10.
CHEN J, GAO S L, XIA C C, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10.
[64]COLLINS J, STANLEY J. Sunpower robust Stirling convertor(SRSC)[C]//Dynamic Power Convertor Technology for Space Power Generation Technical Interchange Meeting. Cleveland: [s.n.], 2018.
[65]骆成栋, 罗雨微, 杨伟杰, 等. 美国空间核动力斯特林电源系统技术发展分析[J]. 国际太空, 2021(6): 44-48.
LUO C D, LUO Y W, YANG W J, et al. Analysis of technological development of stirling power system for space nuclear power in the United States[J]. Space International, 2021(6): 44-48.
[66]张秀, 张昊春, 刘秀婷, 等. 回热式闭式空间核能布雷顿循环系统性能分析及优化[J]. 热科学与技术, 2021, 20(1): 79-85.
ZHANG X, ZHANG H C, LIU X T, et al. Performance analysis and optimization of a closed regenerative Brayton cycle for nuclear space power system[J]. Journal of Thermal Science and Technology, 2021, 20(1): 79-85.
[67]EVANS R C, KLASSEN H, WINZIG C H, et al. Mechanical performance of a 2 to 10 kilowatt Brayton rotating unit[R]. NASA TM X-2043.
[68]DOBLER F X. Analysis, design, fabrication and testing of the mini-Brayton rotating unit(Mini-BRU)[R]. NASA CR-159441.
[69]LEE M. A power conversion concept for the Jupiter icy moons orbiter[C]//1st International Energy Conversion Engineering Conference(IECEC). Reston, Virginia: AIAA, 2003.
[70]FULLER R L. Closed Brayton cycle power conversion unit for fission surface power phase I final report[R]. NASA/CR-2010-215673.
[71]JANSEN B F, BAUER W, MASSON F, et al. DEMOCRITOS demonstrators for realization of nuclear electric propulsion of the European roadmaps MEGAHIT & DiPoP[J]. JSASS Aerospace Tech, 2016, 14(30): 225-233.
[72]马同玲, 张扬军, 王正, 等. 闭式布雷顿循环发电系统热力过程建模及其参数影响研究[J]. 推进技术, 2022, 43(7): 327-335.
MA T L, ZHANG Y J, WANG Z, et al. Thermodynamic process modeling and parameter influence of closed brayton cycle power generation system[J]. Journal of Propulsion Technology, 2022, 43(7): 327-335.
[73]薛翔, 杜磊, 王浩明, 等. 闭式布雷顿循环核心机调控过程仿真分析[J]. 火箭推进, 2021, 47(5): 49-55.
XUE X, DU L, WANG H M, et al. Simulation analysis of adjustment and control process for core machine in closed Brayton cycle[J]. Journal of Rocket Propulsion, 2021, 47(5): 49-55.
[74]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.

Memo

Memo:
-
Last Update: 1900-01-01