[1] 刘世超, 李阳, 吴春瑜, 等. 空间核动力平台电力管理系统的设计[J]. 上海航天, 2019, 36(6): 134-140.
LIU S C, LI Y, WU C Y, et al. Design of power management system at space nuclear power platform[J]. Aerospace Shanghai(Chinese & English), 2019, 36(6): 134-140.
[2]李国欣. 航天器电源系统技术概论[M]. 北京: 中国宇航出版社, 2008.
[3]杨继材. 空间核电源中的热电转换[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017.
[4]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[5]DATAS A, MART A. Thermophotovoltaic energy in space applications: review and future potential[J]. Solar Energy Materials and Solar Cells, 2017, 161: 285-296.
[6]EL-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion[J]. Energy Conversion and Management, 2007, 49(3): 402-411.
[7]HARADA N, KIEN L C, HISHIKAWA M. Basic studies on closed cycle MHD power generation system for space application[C]//35th AIAA Plasmadynamics and Lasers Conference. Reston, Virginia: AIAA, 2004.
[8]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[9]柏胜强, 廖锦城, 夏绪贵, 等. 同位素温差电池用高效热电转换材料与器件研究进展[J]. 深空探测学报, 2020, 7(6): 525-535.
BAI S Q, LIAO J C, XIA X G, et al. Research progress of thermoelectric materials and devices for radioisotope thermoelectric generators[J]. Journal of Deep Space Exploration, 2020, 7(6): 525-535.
[10]马世俊. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019.
[11]吴伟仁, 王倩, 任保国, 等. 放射性同位素热源/电源在航天任务中的应用[J]. 航天器工程, 2013, 22(2): 1-6.
WU W R, WANG Q, REN B G, et al. Application of RHU/RTG in space missions[J]. Spacecraft Engineering, 2013, 22(2): 1-6.
[12]EL-GENK M S, SABER H H. Radioisotope power systems with skutterudite-based thermoelectric converters[J]. Space Technology and Applications International Forum-Staif, 2005, 746(1): 485-494.
[13]HOLGATE T C, BENNETT R, HAMMEL T, et al. Increasing the efficiency of the multi-mission radioisotope thermoelectric generator[J]. Journal of Electronic Materials, 2015, 44(6): 1814-1821.
[14]蔡善钰, 何舜尧. 空间放射性同位素电池发展回顾和新世纪应用前景[J]. 核科学与工程, 2004, 24(2): 97-104.
CAI S Y, HE S Y. Retrospection of development for radioisotope power systems in space and its prospect of application in new century[J]. Nuclear Science and Engineering, 2004, 24(2): 97-104.
[15]宋馨, 陈向东, 雷英俊, 等. 嫦娥四号着陆器月夜热电联供系统设计与验证[J]. 航天器工程, 2019, 28(4): 65-69.
SONG X, CHEN X D, LEI Y J, et al. Design and verification of heat and electricity cogeneration system in moon night of Chang'e-4 lander[J]. Spacecraft Engineering, 2019, 28(4): 65-69.
[16]XING Y F, LIU R H, SUN Y Y, et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability[J]. Journal of Materials Chemistry A, 2018, 6(40): 19470-19478.
[17]ROGL G, GRYTSIV A, ROGL P, et al. Multifilled nanocrystalline p-type didymium-skutterudites with ZT>1.2[J]. Intermetallics, 2010, 18(12): 2435-2444.
[18]LIU W, BAI S. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics, 2019(3): 321-336.
[19]尹德状. MW级热离子转换空间核能系统性能分析与优化[D]. 哈尔滨: 哈尔滨工业大学, 2020.
YIN D Z. Performance analysis and optimization of MW thermal ion conversion space nuclear power system[D]. Harbin: Harbin Institute of Technology, 2020.
[20]凯贝舍夫. 空间核动力装置中的热离子发射[M]. 北京: 中国原子能出版社, 2016.
[21]KOROTEEV A S, OSHEV Y A, POPOV S A, et al. Nuclear power propulsion system for spacecraft[J]. Thermal Engineering, 2015, 62(13): 971-980.
[22]OFFICE S F F. SPACE-R thermionic space nuclear power system: design and technology demonstration[R]. DOE/SF/19441-T4.
[23]PRUSCHEK R, GROSS F, STEHLE H, et al. Incore-thermionic-reactor ITR[R]. AED-CONF-71-100-17.
[24]曹绳全, 杨继材. 反应堆热离子转换器[J]. 核科学与工程, 1984, 4(3): 227-232.
CAO S Q, YANG J C. Thermoionic converter for space reactor[J]. Chinese Journal of Nuclear Science and Engineering, 1984, 4(3): 227-232.
[25]钟武烨, 赵守智, 郑剑平, 等. 空间热离子能量转换技术发展综述[J]. 深空探测学报, 2020, 7(1): 47-60.
ZHONG W Y, ZHAO S Z, ZHENG J P, et al. A review of technology development of thermionic energy conversion for space application[J]. Journal of Deep Space Exploration, 2020, 7(1): 47-60.
[26]郑光华. 太阳能热电子发电的实验与理论基础研究[D]. 杭州: 浙江大学, 2019.
ZHENG G H. Experimental and theoretical research on solar thermal electron power generation[D].Hangzhou: Zhejiang University, 2019.
[27]张怡晨, 胡宇鹏, 王泽, 等. 基于AMTEC的空间核反应堆电源热力学性能分析[J]. 深空探测学报, 2021, 8(2): 205-212.
ZHANG Y C, HU Y P, WANG Z, et al. Thermodynamic analysis of space nuclear power system based on AMTEC[J]. Journal of Deep Space Exploration, 2021, 8(2): 205-212.
[28]马明阳, 谢奇林, 梁文峰, 等. 用于空间堆的碱金属热电转换技术研究[J]. 航天器工程, 2018, 27(6): 102-111.
MA M Y, XIE Q L, LIANG W F, et al. Technical research of alkali metal thermo-to-electric conversion for space reactors[J]. Spacecraft Engineering, 2018, 27(6): 102-111.
[29]SIEVERS R, PANTOLIN J, HUANG C D. Advanced AMTEC radioisotope power systems for deep space applications[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit. Reston, Virginia: AIAA, 2000.
[30]张来福. 钠钾工质碱金属热电转换器的基础研究[D]. 北京: 中国科学院电工研究所, 2002.
ZHANG L F. Basic research on alkali metal thermoelectric converter with sodium and potassium working medium[D].Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences, 2002.
[31]KALANDARISHVILI A G. Working medium circuit for alkali metal thermal-to-electric converters(AMTEC)[C]//Energy Conversion Engineering Conference. New York: [s.n.], 1996.
[32]LYSENKO G P. Lithium AMTEC with gas-diffusion cathode[C]//Energy Conversion Engineering Conference. New York: [s.n.], 1996.
[33]EL-GENK M S, TOURNIER J M P. “SAIRS”: scalable amtec integrated reactor space power system[J]. Progress in Nuclear Energy, 2004, 45(1): 25-69.
[34]MERRILL J M, SCHULLER M, HUANG L M. Vacuum testing of high efficiency multi-base tube AMTEC cells[C]//AIP Conference. Albuquerque, New Mexico: AIP, 1998.
[35]WU S Y, XIAO L, CAO Y D. A review on advances in alkali metal thermal to electric converters(AMTECs)[J]. International Journal of Energy Research, 2009, 33(10): 868-892.
[36]LU X C, LI G S, KIM J Y, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage[J]. Nature Communications, 2014, 5: 4578.
[37]唐路, 夏琦, 刘保林, 等. 脉冲磁流体发电技术研究进展[J]. 推进技术, 2022, 43(8): 26-44.
TANG L, XIA Q, LIU B L, et al. Research progress of pulsed MHD power generation technology[J]. Journal of Propulsion Technology, 2022, 43(8): 26-44.
[38]LITCHFORD R J, HARADA N. Multi-MW closed cycle MHD nuclear space power via nonequilibrium He/Xe working plasma[C]//Nuclear and Emerging Technologies for Space 2011. Albuquerque, NM: [s.n.], 2011.
[39]王志鹏, 吉宇, 石磊. 空间核能磁流体发电系统性能分析及参数优化[J]. 原子能科学技术, 2023, 57(2): 284-293.
WANG Z P, JI Y, SHI L. Performance analysis and parametric optimization of space nuclear power system combined with MHD power generation[J]. Atomic Energy Science and Technology, 2023, 57(2): 284-293.
[40]刘飞标, 朱安文, 唐玉华. 磁流体发电系统在空间电源中的应用研究[J]. 航天器工程, 2015, 24(1): 111-119.
LIU F B, ZHU A W, TANG Y H. Research on MHD power generation system in space electrical power application[J]. Spacecraft Engineering, 2015, 24(1): 111-119.
[41]HOLMAN R, WAY S. Exploring a closed Brayton cycle MHD power system applying NERVA reactor technology[C]//7th Annual Meeting and Technical Display. Reston, Virginia: AIAA, 1970.
[42]LITCHFORD R, BITTEKER L, JONES J. Prospects for nuclear electric propulsion using closed cycle magnetohydrodynamic energy conversion[C]//39th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2001.
[43]周倩倩. 磁流体发电技术浅析[J]. 可持续发展, 2018, 293: 25-27.
ZHOU Q Q. Analysis of magnetic fluid power generation technology[J]. Sustainable Development, 2018, 293:25-27.
[44]苏山河, 付彤, 王远, 等. 新型能量转换微器件的热力学特性及研究进展[J]. 厦门大学学报(自然科学版), 2021, 60(3): 509-519.
SU S H, FU T, WANG Y, et al. Thermodynamic properties and research progress of novel energy conversion micro-devices[J]. Journal of Xiamen University(Natural Science), 2021, 60(3): 509-519.
[45]SCHWEDE J W, BARGATIN I, RILEY D C, et al. Photon-enhanced thermionic emission for solar concentrator systems[J]. Nature Materials, 2010, 9(9): 762-767.
[46]SCHOCK A, OR C T, KUMAR V. Modified design of radioisotope thermophotovoltaic generator to mitigate adverse effect of measured cell voltage[C]//31st Intersociety Energy Conversion Engineering Conference. Washington, D C: [s.n.], 1996.
[47]WILT D, WEHRER R, PALMISIANO M, et al. Monolithic interconnected modules(MIMs)for thermophotovoltaic energy conversion[J]. Semiconductor Science and Technology, 2003, 18(5): S209-S215.
[48]WILT D, CHUBB D, WOLFORD D, et al. Thermophotovoltaics for space power applications[C]//AIP Conference. Madrid: AIP, 2007.
[49]STRAUCH J E, KLEIN A, CHARLES P, et al. General atomics radioisotope fueled thermophotovoltaic power systems for space applications[C]//13th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2015.
[50]贺峦轩. 同位素热光伏电池物理设计[D]. 兰州: 兰州大学, 2021.
HE L X. Physical design of isotope thermophotovoltaic cell[D]. Lanzhou: Lanzhou University, 2021.
[51]张震. 空间核动力金属朗肯循环动态热电转换系统仿真分析及优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG Z. Simulation analysis and optimization of dynamic thermoelectric conversion system of space nuclear power metal Rankine cycle[D].Harbin: Harbin Institute of Technology, 2021.
[52]CATALDO R L, BENNETT G L. U.S. space radioisotope power systems and applications: past, present and future[R]. E-18060.
[53]BEVARD B B. Technology development program for an advanced potassium Rankine power conversion system compatible with several space reactor designs[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2003.
[54]YODER J, CARBAJO J J, MURPHY R W, et al. Technology development program for an advanced potassium Rankine power conversion system compatible with several space reactor designs[R]. ORNL/TM-2004/214.
[55]LONGHURST G R, SCHNITZLER B G, PARKS B T. Multi-megawatt power system trade study[C]//Space Technology and Application International Forum: [s.n.], 2002, 608: 1075-1083.
[56]李华琪, 江新标, 陈立新, 等. 空间堆堆芯热管蒸气流动计算方法研究[J]. 核动力工程, 2014, 35(6): 37-40.
LI H Q, JIANG X B, CHEN L X, et al. Calculation method for vapor flow in space nuclear reactor heat pipe[J]. Nuclear Power Engineering, 2014, 35(6): 37-40.
[57]刘秀婷, 张昊春, 尹德状, 等. 基于液态金属朗肯循环的空间双模式核热推进系统性能分析[J]. 热科学与技术, 2020, 19(5): 444-450.
LIU X T, ZHANG H C, YIN D Z, et al. Performance of space dual-mode nuclear thermal propulsion system based on liquid metal Rankine cycle[J]. Journal of Thermal Science and Technology, 2020, 19(5): 444-450.
[58]RICHARD T. LAHEY J, DHIR V. Research in support of the use of Rankine cycle energy conversion systems for space power and propulsion[R]. NASA/CR-2004-213142.
[59]张昊春, 冯致远, 蔡书宜, 等. 空间核动力装置斯特林转换系统的热力学性能优化分析[J]. 核动力工程, 2016, 37(3): 146-151.
ZHANG H C, FENG Z Y, CAI S Y, et al. Optimizing analysis of thermodynamic performance optimizing analysis of stirling conversion system for space nuclear power installation[J]. Nuclear Power Engineering, 2016, 37(3): 146-151.
[60]BRIGGS M, GIBSON M, GENG S, et al. Development status of the fission power system technology demonstration unit[C]//10th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2012.
[61]MASON L S, SCHREIBER J G. A historical review of Brayton and Stirling power conversion technologies for space applications[R]. NASA/TM-2007-214976.
[62]ORITI S M. Advanced Stirling radioisotope generator engineering unit2(ASRG EU2)final assembly[C]//Nuclear and Emerging Technologies for Space 2015. Albuquerque, NM: [s.n.], 2015.
[63]陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6): 1-10.
CHEN J, GAO S L, XIA C C, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10.
[64]COLLINS J, STANLEY J. Sunpower robust Stirling convertor(SRSC)[C]//Dynamic Power Convertor Technology for Space Power Generation Technical Interchange Meeting. Cleveland: [s.n.], 2018.
[65]骆成栋, 罗雨微, 杨伟杰, 等. 美国空间核动力斯特林电源系统技术发展分析[J]. 国际太空, 2021(6): 44-48.
LUO C D, LUO Y W, YANG W J, et al. Analysis of technological development of stirling power system for space nuclear power in the United States[J]. Space International, 2021(6): 44-48.
[66]张秀, 张昊春, 刘秀婷, 等. 回热式闭式空间核能布雷顿循环系统性能分析及优化[J]. 热科学与技术, 2021, 20(1): 79-85.
ZHANG X, ZHANG H C, LIU X T, et al. Performance analysis and optimization of a closed regenerative Brayton cycle for nuclear space power system[J]. Journal of Thermal Science and Technology, 2021, 20(1): 79-85.
[67]EVANS R C, KLASSEN H, WINZIG C H, et al. Mechanical performance of a 2 to 10 kilowatt Brayton rotating unit[R]. NASA TM X-2043.
[68]DOBLER F X. Analysis, design, fabrication and testing of the mini-Brayton rotating unit(Mini-BRU)[R]. NASA CR-159441.
[69]LEE M. A power conversion concept for the Jupiter icy moons orbiter[C]//1st International Energy Conversion Engineering Conference(IECEC). Reston, Virginia: AIAA, 2003.
[70]FULLER R L. Closed Brayton cycle power conversion unit for fission surface power phase I final report[R]. NASA/CR-2010-215673.
[71]JANSEN B F, BAUER W, MASSON F, et al. DEMOCRITOS demonstrators for realization of nuclear electric propulsion of the European roadmaps MEGAHIT & DiPoP[J]. JSASS Aerospace Tech, 2016, 14(30): 225-233.
[72]马同玲, 张扬军, 王正, 等. 闭式布雷顿循环发电系统热力过程建模及其参数影响研究[J]. 推进技术, 2022, 43(7): 327-335.
MA T L, ZHANG Y J, WANG Z, et al. Thermodynamic process modeling and parameter influence of closed brayton cycle power generation system[J]. Journal of Propulsion Technology, 2022, 43(7): 327-335.
[73]薛翔, 杜磊, 王浩明, 等. 闭式布雷顿循环核心机调控过程仿真分析[J]. 火箭推进, 2021, 47(5): 49-55.
XUE X, DU L, WANG H M, et al. Simulation analysis of adjustment and control process for core machine in closed Brayton cycle[J]. Journal of Rocket Propulsion, 2021, 47(5): 49-55.
[74]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.