|Table of Contents|

Evaluation of thermoelectric conversion technology for nuclear electric propulsion spacecraft in deep space exploration(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
55-65
Research Field:
目次
Publishing date:

Info

Title:
Evaluation of thermoelectric conversion technology for nuclear electric propulsion spacecraft in deep space exploration
Author(s):
XUE Xiang12 CHEN Jinli12 WANG Haoming12 TANG Zhipeng12 WANG Yuanding12
1.Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China
Keywords:
nuclear electric propulsion spacecraft thermoelectric conversion technical scheme
PACS:
V439.5
DOI:
10.3969/j.issn.1672-9374.2024.04.005
Abstract:
Facing the future ultra-long-distance deep space exploration mission, the nuclear electric propulsion mode has become a better space propulsion scheme with its characteristics, such as high specific impulse and long life. The nuclear electric propulsion spacecraft uses thermoelectric conversion technology to convert thermal energy from a nuclear reactor into electricity for an electric propulsion system. In order to further expand the deep space detection distance and shorten the mission cycle, it is necessary to improve the power level of electric propulsion system by means of high-power nuclear reactor and its corresponding thermoelectric conversion technology. The technical scheme is subject to many factors, such as nuclear reactor grade, system power density and technical maturity. Through the comparison of different schemes, a technical scheme for thermoelectric conversion on the nuclear electric propulsion spacecraft is preliminarily formulated and evaluated. Meanwhile, the primary constraints and riskiest challenges in the scheme are determined.

References:

[1] 张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[2]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[3]张振寰. 基于MW级月球货运火箭的空间核电推进系统性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[4]刘秀婷. 基于MW级布雷顿循环的空间核热电双模式系统性能优化[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[5]李强, 李家文, 王戈, 等. 新型空间双模式核热推进系统热力学性能研究[J]. 火箭推进, 2018, 44(6): 21-28.
LI Q, LI J W, WANG G, et al. Research on thermodynamic performance of a new aerospace nuclear thermal propulsion system[J]. Journal of Rocket Propulsion, 2018, 44(6): 21-28.
[6]陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6): 1-10.
CHEN J, GAO S L, XIA C C, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10.
[7]林庆国, 王浩明, 程诚. 基于氢化镁的核电/核热双模共质空间核动力技术[J]. 上海航天, 2019, 36(6): 114-120.
LIN Q G, WANG H M, CHENG C. Nuclear electric/thermal dual-mode space nuclear propulsion technology based on magnesium hydride[J]. Aerospace Shanghai, 2019, 36(6): 114-120.
[8]王浩明, 薛翔, 张银勇, 等. 空间闭式布雷顿循环旁路调节特性分析[J]. 火箭推进, 2021, 47(2): 61-67.
WANG H M, XUE X, ZHANG Y Y, et al. Analysis of bypass regulation characteristics for space closed Brayton cycle system[J]. Journal of Rocket Propulsion, 2021, 47(2): 61-67.
[9]BARNET T, JOHN W. Nuclear electric propulsion technologies: Overview of the NASA/DoE/DoD nuclear electric propulsion workshop[J]. Sensors, 2014, 14(3): 4831-4855.
[10]MASON L S. A power conversion concept for the Jupiter icy moons orbiter[J]. Journal of Propulsion and Power, 2004, 20(5): 902-910.
[11]ORIOL S, MASSON F, TINSLEY T, et al. DEMOCRITOS: development logic for a demonstrator preparing nuclear-electric spacecraft[C]//2016 Nuclear and Emerging Technologies for Space(NETS 2016). Huntsville: [s.n.], 2016.
[12]KOROTEEV A S, KAREVSKIY A V, LOVTSOV A S, et al. Study of operation of power and propulsion system based on closed Brayton cycle power conversion unit and electric propulsion[R]. IEPC-2019-A187, 2019.
[13]JANSEN F, GRUNDMANN J T, MAIWALD V, et al. High power electric propulsion: MARS plus EUROPA-already beyond 2025[C]//36th International Electric Propulsion Conference. Vienna: [s.n.], 2019.
[14]周成, 张笃周, 李永, 等. 空间核电推进技术发展研究[J]. 空间控制技术与应用, 2013, 39(5): 1-6.
ZHOU C, ZHANG D Z, LI Y, et al. On the development of nuclear electric propulsion technology[J]. Aerospace Control and Application, 2013, 39(5): 1-6.
[15]LIU H Q, CHI Z R, ZANG S S. Optimization of a closed Brayton cycle for space power systems[J]. Applied Thermal Engineering, 2020, 179: 115611.
[16]HU H M, GUO C H, CAI H F, et al. Dynamic characteristics of the recuperator thermal performance in a S-CO2 Brayton cycle[J]. Energy, 2021, 214: 119017.
[17]ZHAO H, DENG Q H, HUANG W T, et al. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(8): 081602.
[18]薛翔, 杜磊, 王浩明, 等. 闭式布雷顿循环核心机调控过程仿真分析[J]. 火箭推进, 2021, 47(5): 49-55.
XUE X, DU L, WANG H M, et al. Simulation analysis of adjustment and control process for core machine in closed Brayton cycle[J]. Journal of Rocket Propulsion, 2021, 47(5): 49-55.
[19]郭凯伦, 王成龙, 秋穗正, 等. 兆瓦级核电推进系统布雷顿循环热电转换特性分析[J]. 原子能科学技术, 53(1): 17-23.
[20]冯致远, 张昊春, 吉宇, 等. 航天器核动力推进系统热力学性能研究[J]. 载人航天, 2016, 22(6): 797-804.
FENG Z Y, ZHANG H C, JI Y, et al. Study on thermodynamic performance of nuclear power propulsion system in spacecraft[J]. Manned Spaceflight, 2016, 22(6): 797-804.
[21]郑开云. 超临界二氧化碳布雷顿循环效率分析[J]. 发电设备, 2017, 31(5): 305-309.
ZHENG K Y. Efficiency analysis for supercritical carbon dioxide brayton cycles[J]. Power Equipment, 2017, 31(5): 305-309.
[22]侯捷名. 100 kWe级锂冷空间快堆耦合布雷顿循环系统运行特性研究[M]. 上海: 上海交通大学, 2020.
[23]王浩明, 陈金利, 王园丁, 等. 基于运行状态的氦氙布雷顿循环气体组分分析[J]. 火箭推进, 2023, 49(3): 76-82.
WANG H M, CHEN J L, WANG Y D, et al. Gas composition analysis of helium-xenon Brayton cycle based on operating status[J]. Journal of Rocket Propulsion, 2023, 49(3): 76-82.
[24]AIAA. Mass properties control for space systems [R]. 2019.
[25]石佳子. 空间大功率热排放系统的设计与优化[M]. 哈尔滨: 哈尔滨工程大学, 2018.
[26]张绿云, 杨开. 美国SLS重型运载火箭研制特点分析[J]. 国际太空, 2021(11): 43-47.
ZHANG L Y, YANG K. Analysis of the development characteristics of US SLS heavy launch vehicles[J]. Space International, 2021(11): 43-47.
[27]张智, 容易, 秦曈, 等. 重型运载火箭总体技术研究[J]. 载人航天, 2017, 23(1): 1-7.
ZHANG Z, RONG Y, QIN T, et al. Research on overall technology of heavy launch vehicle[J]. Manned Spaceflight, 2017, 23(1): 1-7.
[28]STEVE O, LAURA B, MAX C, et al. Mars opposition piloted nuclear electric propulsion(NEP)-chem vehicle[Z]. 2020.
[29]李智. 空间反应堆动态能量转换系统特性研究[D]. 北京: 清华大学, 2017.
LI Z. Research on the dynamic energy conversion system for space nuclear reactor[D]. Beijing: Tsinghua University, 2017.
[30]GIBSON M A, MASON L S, BOWMAN C, et al. Kilopower, NASA's small fission power system for science and human exploration[C]//12th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2014.
[31]CHAIKEN M. The kilopower space nuclear fission power reactor[R]. GRC-E-DAA-TN68456.
[32]DATAS A, MART A. Thermophotovoltaic energy in space applications: review and future potential[J]. Solar Energy Materials and Solar Cells, 2017, 161: 285-296.
[33]MASON L S. A Comparison of Brayton and stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts[J]. American Institute of Physics, 2001, 552(1): 1017-1022.
[34]张明, 蔡晓东, 杜青, 等. 核反应堆空间应用研究[J]. 航天器工程, 2013, 22(6): 119-126.
ZHANG M, CAI X D, DU Q, et al. Research on nuclear reactor in space application[J]. Spacecraft Engineering, 2013, 22(6): 119-126.
[35]ZIKA M J, WOLLMAN M J. Prometheus project reactor module final report, for naval reactors information[R]. New York: Knolls Atomic Power Laboratory, 2006.
[36]PLUTA P R, SMITH M A, MATTEO D N. SP-100, a flexible technology for space power from 10 s to 100 s of kW[C]//24th Intersociety Energy Conversion Engineering Conference. Washington, D C: [s.n.], 1989.
[37]MENG T, CHENG K, ZHAO F L, et al. Computational flow and heat transfer design and analysis for 1/12 gas-cooled space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 135: 106986.
[38]俄罗斯联邦. 外层空间应用核动力源的独特设计考虑[EB/OL]. https://www.A/AC.105/C.1/2006/NPS/WP.3, 2006.

Memo

Memo:
-
Last Update: 1900-01-01