|Table of Contents|

Research progress and prospect of space heat pipe cooled reactor power(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
66-75
Research Field:
目次
Publishing date:

Info

Title:
Research progress and prospect of space heat pipe cooled reactor power
Author(s):
LIU Xiao WANG Ning ZHANG Kaiyuan QI Min LI ZhongchunZHANG Zhuohua XIE Ximing CHAI Xiaoming
National Key Laboratory of Nuclear Reactor Technology,Nuclear Power Institute of China, Chengdu 610200, China
Keywords:
space power nuclear power heat pipe cooled reactor high-temperature heat pipe
PACS:
TL99
DOI:
10.3969/j.issn.1672-9374.2024.04.006
Abstract:
The development of deep space exploration technology has been restricted by reliable engine power. The traditional solar power source and chemical power source have a small scope of application, and the environmental adaptability is not strong, while the micro nuclear reactor power source has high energy density. It does not depend on sunlight and has strong survivability, which can be applied to multi-scene tasks. In the design scheme of the power supply of the miniature nuclear reactor, the heat pipe reactor has become one of the most promising options for the power supply of space nuclear reactors due to its modular design idea, simplified reactor structure, good inherent safety characteristics and transient response characteristics. This paper summarizes the current development status of space heat pipe reactors through literature research. Starting from the development history, it sorts out the design and theoretical research of heat pipe reactors, summarizes the development directions and key technologies of heat pipe reactors.

References:

[1] 杨述明, 谢昌霖, 程玉强, 等. 液体火箭发动机健康监控技术研究进展[J]. 火箭推进, 2024, 50(1): 28-45.
YANG S M, XIE C L, CHENG Y Q, et al. Research progress in health monitoring technology for liquid rocket engines[J]. Journal of Rocket Propulsion, 2024, 50(1): 28-45.
[2]王凯, 王东方, 刘友强, 等. 变形高温合金在液体火箭发动机中的应用进展及展望[J]. 火箭推进, 2024, 50(1): 57-66.
WANG K, WANG D F, LIU Y Q, et al. Application and prospect of wrought superalloy in liquid rocket engine[J]. Journal of Rocket Propulsion, 2024, 50(1): 57-66.
[3]SFORZA P M, SHOOMAN M L, PELACCIO D G. A safety and reliability analysis for space nuclear thermal propulsion systems[J]. Acta Astronautica, 1993, 30: 67-83.
[4]MARSHALL A C, MEHLMAN W F, KOMPANIETZ G, et al. Integrated safety program for the nuclear electric propulsion space test program[C]//AIP Conference. Albuquerque, New Mexico: AIP, 1994.
[5]CASSADY R J, FRISBEE R H, GILLAND J H, et al. Recent advances in nuclear powered electric propulsion for space exploration[J]. Energy Conversion and Management, 2008, 49(3): 412-435.
[6]JOYNER C R. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2003.
[7]CAMPBELL M, KING J D, WISE H M, et al. The role of nuclear power in space exploration and the associated environmental issues: an overview[EB/OL]. https://www.semanticscholar.org/paper/The-Role-of-Nuclear-Power-in-Space-Exploration-and-Campbell-King/9b60501f6e9683f3eb30dad5c7da672c89a58518, 2009.
[8]AFTERGOOD S, HAFEMEISTER D, PRILUTSKY O, et al. Nuclear power in space[J]. Scientific American, 1991, 264: 42-47.
[9]BENNETT G L. A look at the Soviet space nuclear power program[C]//24th Intersociety Energy Conversion Engineering Conference. Washington, D C: IEEE, 2002.
[10]杨启法, 卢浩琳. 空间核反应堆电源研究和应用[J]. 航天器工程, 1995, 4(4): 11-20.
YANG Q F, LU H L. Research and application of space nuclear reactor power supply[J]. Spacecraft Engineering, 1995, 4(4): 11-20.
[11]BENNETT G L, HEMLER R J, SCHOCK A. Space nuclear power-an overview[J]. Journal of Propulsion and Power, 1996, 12(5): 901-910.
[12]MENG F K, CHEN L G, SUN F R. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities[J]. Energy, 2011, 36(5): 3513-3522.
[13]WOJTAS N, RÜTHEMANN L, GLATZ W, et al. Optimized thermal coupling of micro thermoelectric generators for improved output performance[J]. Renewable Energy, 2013, 60: 746-753.
[14]HUNT T K, SIEVERS R K, KUMMER J T, et al. AMTEC/SHE for space nuclear power applications[C]//AIP Conference. Albuquerque, New Mexico:AIP, 1992.
[15]BANKSTON C, COLE T, KHANNA S, et al. Alkali metal thermoelectric conversion(AMTEC)for space nuclear power systems[EB/OL]. https://www.semanticscholar. org/paper/Alkali-Metal-Thermoelectric-Conversion-(AMTEC)-for-Bankston-Cole/4c16378f1d665da9c3404fa9a56ecc5b3b8ed0f2, 1985.
[16]GALLO B M, EL-GENK M S, TOURNIER J M. Compressor and turbine models of Brayton units for space nuclear power systems[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2007.
[17]PETERSON P F. Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants[J]. Nuclear Technology, 2003, 144(3): 279-288.
[18]MASON L S. A comparison of Brayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2001.
[19]BRANDHORST H W. New 5 kilowatt free-piston stirling space converter developments[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2007.
[20]YODER G, CARBAJO J, MURPHY R, et al. Potassium Rankine cycle system design study for space nuclear electric propulsion[C]//3rd International Energy Conversion Engineering Conference. Reston, Virigina: AIAA, 2005.
[21]王浩明, 陈金利, 王园丁, 等. 基于运行状态的氦氙布雷顿循环气体组分分析[J]. 火箭推进, 2023, 49(3): 76-82.
WANG H M, CHEN J L, WANG Y D, et al. Gas composition analysis of helium-xenon Brayton cycle based on operating status[J]. Journal of Rocket Propulsion, 2023, 49(3): 76-82.
[22]NICHOLS J P, HOLCOMB R S, MOYERS J C, et al. Nuclear Rankine/flywheel MMW space power concept[Z]. 1987.
[23]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[24]GROVER G M, COTTER T P, ERICKSON G F. Structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(6): 1990-1991.
[25]RANKEN W A, HOUTS M G. Heat pipe cooled reactors for multi-kilowatt space power supplies[C]// 9th International Heat Pipe Conference. Albuquerque, New Mexico: [s.n.], 1995.
[26]HOUTS M G, POSTON D I, RANKEN W A. Heatpipe space power and propulsion systems[C]//AIP Conference. Albuquerque, New Mexico: AIP, 1996.
[27]MCCLURE P R, POSTON D I, DIXON D D,et al. Final results of demonstration using flattop fissions(DUFF)experiment[R]. LA-UR-12-25165,2012.
[28]VANDYKE M K, MARTIN J, HOUTS M G. Overview of non-nuclear testing of the safe, affordable 30 kW fission engine, including end-to-end demonstrator testing[R]. Washington, D C: National Aeronautics and Space Administration, 2003.
[29]VANDYKE M, MARTIN J. Non-nuclear testing of reactor systems in the early flight fission test facilities(EFF-TF)[EB/OL]. https://www.semanticscholar.org/paper/Non-nuclear-Testing-of-Reactor-Systems-in-the-Early-Vandyke-Martin/1fd2df36e2ba7f1a7cc97c78346f0655e0d18b42, 2004.
[30]POSTON D I. The heatpipe-operated Mars exploration reactor(HOMER)[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2001.
[31]KAMBE M, TSUNODA H, MISHIMA K, et al. Rapid-L operator-free fast reactor concept without any control rods[J]. Nuclear Technology, 2003, 143(1): 11-21.
[32]HARTY R B, MASON L S. 100-kWe lunar/mars surface power utilizing the SP-100 reactor with dynamic conversion[Z]. 2004.
[33]EL-GENK M S. Conceptual design of HP-STMCs space reactor power system for 110 kWe[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2004.
[34]POSTON D I, KAPERNICK R J, GUFFEE R M. Design and analysis of the SAFE-400 space fission reactor[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2002.
[35]BESS J D. Project luna succendo: the lunar evolutionary growth-optimized(LEGO)reactor[Z]. 2008.
[36]BESS J D. A basic LEGO reactor design for the provision of lunar surface power[R].[S.l.]: Office of Scientific & Technical Information, 2008.
[37]GIBSON M A, MASON L S, BOWMAN C, et al. Kilopower, NASA's small fission power system for science and human exploration[C]//12th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2014.
[38]姚成志, 胡古, 解家春, 等. 月球表面核反应堆电源方案[J]. 科技导报, 2015, 33(12): 19-23.
YAO C Z, HU G, XIE J C, et al. A scheme of lunar surface nuclear reactor power[J]. Science & Technology Review, 2015, 33(12): 19-23.
[39]WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299.
[40]MA Y G, LIU M Y, CHEN E H, et al. Rmc/ansys multi-physics coupling solutions for heat pipe cooled reactors analyses[J]. EPJ Web of Conferences, 2021, 247: 06007.
[41]Oklo. Technical specifications[EB/OL]. https://www.nrc.gov/reactors/new-reactors/col/aurora-oklo.html, 2020.
[42]Westinghouse eVinciTM micro-reactor pre-application[Z]. 2021.
[43]GENK M S, HOOVER M D. Transactions of the fourth symposium on space nuclear power systems[Z]. 1987.
[44]TOURNIER J M, EL-GENK M S. A heat pipe transient analysis model[J]. International Journal of Heat and Mass Transfer, 1994, 37(5): 753-762.
[45]SCHEIDEGGER A E. The physics of flow through porous media[M]. 3rd ed. Toronto: University of Toronto Press, 1974.
[46]GAETA M J, BEST F R. Transient thermal analysis of a space reactor power system[J]. Nuclear Technology, 1993, 103(1): 19-33.
[47]KLEIN S K, KIMPLAND R. Dynamic system simulation of the KRUSTY experiment[EB/OL]. https://www.semanticscholar.org/paper/Dynamic-System-Simulation-of-the-KRUSTY-Experiment-Klein-Kimpland/a22de4a62c47ef00e6bbfd7baed6919fe8dcbc6d, 2016.
[48]POSTON D. KRUSTY design and modeling[EB/OL]. https://www.semanticscholar.org/paper/KRUSTY-Design-and-Modeling-Poston/2411b8bb6d3c904927f2be842b93020d775e642a, 2016.
[49]KAPERNICK R J. Thermal stress calculations for heatpipe-cooled reactor power systems[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2003.
[50]刘松涛, 袁园, 魏宗岚, 等. 热管冷却空间反应堆事故特性研究[J]. 核动力工程, 2016, 37(5): 119-124.
LIU S T, YUAN Y, WEI Z L, et al. Accident analysis of heat pipe cooled space reactor system[J]. Nuclear Power Engineering, 2016, 37(5): 119-124.
[51]田晓艳, 江新标, 陈立新, 等. 热管冷却双模式空间堆堆芯稳态热工水力分析程序开发[J]. 核动力工程, 2017, 38(5): 34-39.
TIAN X Y, JIANG X B, CHEN L X, et al. Development of code for steady-state thermal-hydraulic analysis in bimodal space nuclear reactor with heat pipe[J]. Nuclear Power Engineering, 2017, 38(5): 34-39.
[52]李华琪, 江新标, 陈立新, 等. 空间堆堆芯热管蒸气流动计算方法研究[J]. 核动力工程, 2014, 35(6): 37-40.
LI H Q, JIANG X B, CHEN L X, et al. Calculation method for vapor flow in space nuclear reactor heat pipe[J]. Nuclear Power Engineering, 2014, 35(6): 37-40.
[53]MA Y, LIU M, YU H, et al. Neutronic/thermal-mechanical coupling in heat pipe cooled reactor[Z]. 2020.
[54]张胤, 王成龙, 唐思邈, 等. 固态热管反应堆模拟装置热工水力特性分析[J]. 原子能科学技术, 2021, 55(6): 984-990.
ZHANG Y, WANG C L, TANG S M, et al. Analysis of thermal-hydraulic characteristic of solid heat pipe reactor simulator device[J]. Atomic Energy Science and Technology, 2021, 55(6): 984-990.
[55]葛攀和, 李敏, 李杨柳, 等. 温差热电转换型空间热管冷却反应堆瞬态分析程序开发及验证[J]. 原子能科学技术, 2024, 58(1): 69-83.
GE P H, LI M, LI Y L, et al. Development and verification of transient analysis program for thermoelectric space heat pipe cooled reactor[J]. Atomic Energy Science and Technology, 2024, 58(1): 69-83.
[56]王立鹏, 曹璐, 陈森, 等. 基于非结构网格MCNP的KRUSTY热膨胀负反馈计算研究[J]. 核动力工程, 2023, 44(6): 45-53.
WANG L P, CAO L, CHEN S, et al. Study of KRUSTY thermal expansion negative feedback calculation based on unstructured-mesh MCNP[J]. Nuclear Power Engineering, 2023, 44(6): 45-53.
[57]钱雅兰,卓钰铖,李肇华,等. 热管冷却反应堆概率安全评价关键问题研究概述[C]//中国核学会.中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集.北京:科学技术文献出版社,2023.
[58]MARTIN J, HOUTS M G. Overview of non-nuclear testing of the safe, affordable 30 kW fission engine, including end-to-end demonstrator testing[J]. 2003, 504(1): 128-130.
[59]STINSON-BAGBY K L. Realistic testing of the safe affordable fission engine(SAFE-100)thermal simulator using fiber Bragg gratings[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2004.
[60]GODFROY T. Realistic development and testing of fission systems at a non-nuclear testing facility[C]//AIP Conference. Seoul: AIP, 2000.
[61]DYKE M V, HOUTS M, GODFROY T, et al. Phase 1 space fission propulsion system testing and development progress[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2002.
[62]WRIGHT S A. Proposed design and operation of a heat pipe reactor using the Sandia national laboratories annular core test facility and existing UZrH fuel pins[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2005.
[63]GIBSON M, BRIGGS M, SANZI J, et al. Heat pipe powered stirling conversion for the demonstration using flattop fission(DUFF)test[EB/OL]. https://www.semanticscholar.org/paper/Heat-Pipe-Powered-Stirling-Conversion-for-the-Using-Gibson-Briggs/16248fcd1b67e8cbdced19ce2e245c67edafd409, 2013.
[64]MCCLURE P, POSTON D, DIXON D D. Final results of demonstration using flattop fissions(DUFF)experi-ment[EB/OL]. https://www.semanticscholar. org/paper/Final-Results-of-Demonstration-Using-Flattop-(DUFF)-McClure-Poston/418591a222f3e9d113ac30900460b04b8f3a2ba0, 2012.
[65]KLEIN S K, KIMPLAND R H. Dynamic system simulation of the KRUSTY experiment[R]. Los Alamos: LANL, 2016.
[66]BRIGGS M H, GIBSON M A, SANZI J. Electrically heated testing of the kilowatt reactor using stirling technology(KRUSTY)experiment using a depleted uranium core[R]. Los Alamos: LANL, 2017.
[67]余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4): 1-8.
YU H X, MA Y G, ZHANG Z H, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8.
[68]唐思邈, 王成龙, 苏光辉, 等. 小型核电源传热及热电特性实验研究[J]. 核动力工程, 2019, 40(4): 200-202.
TANG S M, WANG C L, SU G H, et al. Experimental research on heat transfer and thermoelectric characteristics of small nuclear power supply facilities[J]. Nuclear Power Engineering, 2019, 40(4): 200-202.
[69]代智文, 刘天才, 王成龙, 等. 空间核反应堆电源热工水力特性研究综述[J]. 原子能科学技术, 2019, 53(7): 1296-1309.
DAI Z W, LIU T C, WANG C L, et al. Research review on thermal-hydraulic performance of space nuclear reactor power[J]. Atomic Energy Science and Technology, 2019, 53(7): 1296-1309.

Memo

Memo:
-
Last Update: 1900-01-01