[1] 杨述明, 谢昌霖, 程玉强, 等. 液体火箭发动机健康监控技术研究进展[J]. 火箭推进, 2024, 50(1): 28-45.
YANG S M, XIE C L, CHENG Y Q, et al. Research progress in health monitoring technology for liquid rocket engines[J]. Journal of Rocket Propulsion, 2024, 50(1): 28-45.
[2]王凯, 王东方, 刘友强, 等. 变形高温合金在液体火箭发动机中的应用进展及展望[J]. 火箭推进, 2024, 50(1): 57-66.
WANG K, WANG D F, LIU Y Q, et al. Application and prospect of wrought superalloy in liquid rocket engine[J]. Journal of Rocket Propulsion, 2024, 50(1): 57-66.
[3]SFORZA P M, SHOOMAN M L, PELACCIO D G. A safety and reliability analysis for space nuclear thermal propulsion systems[J]. Acta Astronautica, 1993, 30: 67-83.
[4]MARSHALL A C, MEHLMAN W F, KOMPANIETZ G, et al. Integrated safety program for the nuclear electric propulsion space test program[C]//AIP Conference. Albuquerque, New Mexico: AIP, 1994.
[5]CASSADY R J, FRISBEE R H, GILLAND J H, et al. Recent advances in nuclear powered electric propulsion for space exploration[J]. Energy Conversion and Management, 2008, 49(3): 412-435.
[6]JOYNER C R. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2003.
[7]CAMPBELL M, KING J D, WISE H M, et al. The role of nuclear power in space exploration and the associated environmental issues: an overview[EB/OL]. https://www.semanticscholar.org/paper/The-Role-of-Nuclear-Power-in-Space-Exploration-and-Campbell-King/9b60501f6e9683f3eb30dad5c7da672c89a58518, 2009.
[8]AFTERGOOD S, HAFEMEISTER D, PRILUTSKY O, et al. Nuclear power in space[J]. Scientific American, 1991, 264: 42-47.
[9]BENNETT G L. A look at the Soviet space nuclear power program[C]//24th Intersociety Energy Conversion Engineering Conference. Washington, D C: IEEE, 2002.
[10]杨启法, 卢浩琳. 空间核反应堆电源研究和应用[J]. 航天器工程, 1995, 4(4): 11-20.
YANG Q F, LU H L. Research and application of space nuclear reactor power supply[J]. Spacecraft Engineering, 1995, 4(4): 11-20.
[11]BENNETT G L, HEMLER R J, SCHOCK A. Space nuclear power-an overview[J]. Journal of Propulsion and Power, 1996, 12(5): 901-910.
[12]MENG F K, CHEN L G, SUN F R. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities[J]. Energy, 2011, 36(5): 3513-3522.
[13]WOJTAS N, RÜTHEMANN L, GLATZ W, et al. Optimized thermal coupling of micro thermoelectric generators for improved output performance[J]. Renewable Energy, 2013, 60: 746-753.
[14]HUNT T K, SIEVERS R K, KUMMER J T, et al. AMTEC/SHE for space nuclear power applications[C]//AIP Conference. Albuquerque, New Mexico:AIP, 1992.
[15]BANKSTON C, COLE T, KHANNA S, et al. Alkali metal thermoelectric conversion(AMTEC)for space nuclear power systems[EB/OL]. https://www.semanticscholar. org/paper/Alkali-Metal-Thermoelectric-Conversion-(AMTEC)-for-Bankston-Cole/4c16378f1d665da9c3404fa9a56ecc5b3b8ed0f2, 1985.
[16]GALLO B M, EL-GENK M S, TOURNIER J M. Compressor and turbine models of Brayton units for space nuclear power systems[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2007.
[17]PETERSON P F. Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants[J]. Nuclear Technology, 2003, 144(3): 279-288.
[18]MASON L S. A comparison of Brayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2001.
[19]BRANDHORST H W. New 5 kilowatt free-piston stirling space converter developments[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2007.
[20]YODER G, CARBAJO J, MURPHY R, et al. Potassium Rankine cycle system design study for space nuclear electric propulsion[C]//3rd International Energy Conversion Engineering Conference. Reston, Virigina: AIAA, 2005.
[21]王浩明, 陈金利, 王园丁, 等. 基于运行状态的氦氙布雷顿循环气体组分分析[J]. 火箭推进, 2023, 49(3): 76-82.
WANG H M, CHEN J L, WANG Y D, et al. Gas composition analysis of helium-xenon Brayton cycle based on operating status[J]. Journal of Rocket Propulsion, 2023, 49(3): 76-82.
[22]NICHOLS J P, HOLCOMB R S, MOYERS J C, et al. Nuclear Rankine/flywheel MMW space power concept[Z]. 1987.
[23]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[24]GROVER G M, COTTER T P, ERICKSON G F. Structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(6): 1990-1991.
[25]RANKEN W A, HOUTS M G. Heat pipe cooled reactors for multi-kilowatt space power supplies[C]// 9th International Heat Pipe Conference. Albuquerque, New Mexico: [s.n.], 1995.
[26]HOUTS M G, POSTON D I, RANKEN W A. Heatpipe space power and propulsion systems[C]//AIP Conference. Albuquerque, New Mexico: AIP, 1996.
[27]MCCLURE P R, POSTON D I, DIXON D D,et al. Final results of demonstration using flattop fissions(DUFF)experiment[R]. LA-UR-12-25165,2012.
[28]VANDYKE M K, MARTIN J, HOUTS M G. Overview of non-nuclear testing of the safe, affordable 30 kW fission engine, including end-to-end demonstrator testing[R]. Washington, D C: National Aeronautics and Space Administration, 2003.
[29]VANDYKE M, MARTIN J. Non-nuclear testing of reactor systems in the early flight fission test facilities(EFF-TF)[EB/OL]. https://www.semanticscholar.org/paper/Non-nuclear-Testing-of-Reactor-Systems-in-the-Early-Vandyke-Martin/1fd2df36e2ba7f1a7cc97c78346f0655e0d18b42, 2004.
[30]POSTON D I. The heatpipe-operated Mars exploration reactor(HOMER)[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2001.
[31]KAMBE M, TSUNODA H, MISHIMA K, et al. Rapid-L operator-free fast reactor concept without any control rods[J]. Nuclear Technology, 2003, 143(1): 11-21.
[32]HARTY R B, MASON L S. 100-kWe lunar/mars surface power utilizing the SP-100 reactor with dynamic conversion[Z]. 2004.
[33]EL-GENK M S. Conceptual design of HP-STMCs space reactor power system for 110 kWe[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2004.
[34]POSTON D I, KAPERNICK R J, GUFFEE R M. Design and analysis of the SAFE-400 space fission reactor[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2002.
[35]BESS J D. Project luna succendo: the lunar evolutionary growth-optimized(LEGO)reactor[Z]. 2008.
[36]BESS J D. A basic LEGO reactor design for the provision of lunar surface power[R].[S.l.]: Office of Scientific & Technical Information, 2008.
[37]GIBSON M A, MASON L S, BOWMAN C, et al. Kilopower, NASA's small fission power system for science and human exploration[C]//12th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2014.
[38]姚成志, 胡古, 解家春, 等. 月球表面核反应堆电源方案[J]. 科技导报, 2015, 33(12): 19-23.
YAO C Z, HU G, XIE J C, et al. A scheme of lunar surface nuclear reactor power[J]. Science & Technology Review, 2015, 33(12): 19-23.
[39]WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299.
[40]MA Y G, LIU M Y, CHEN E H, et al. Rmc/ansys multi-physics coupling solutions for heat pipe cooled reactors analyses[J]. EPJ Web of Conferences, 2021, 247: 06007.
[41]Oklo. Technical specifications[EB/OL]. https://www.nrc.gov/reactors/new-reactors/col/aurora-oklo.html, 2020.
[42]Westinghouse eVinciTM micro-reactor pre-application[Z]. 2021.
[43]GENK M S, HOOVER M D. Transactions of the fourth symposium on space nuclear power systems[Z]. 1987.
[44]TOURNIER J M, EL-GENK M S. A heat pipe transient analysis model[J]. International Journal of Heat and Mass Transfer, 1994, 37(5): 753-762.
[45]SCHEIDEGGER A E. The physics of flow through porous media[M]. 3rd ed. Toronto: University of Toronto Press, 1974.
[46]GAETA M J, BEST F R. Transient thermal analysis of a space reactor power system[J]. Nuclear Technology, 1993, 103(1): 19-33.
[47]KLEIN S K, KIMPLAND R. Dynamic system simulation of the KRUSTY experiment[EB/OL]. https://www.semanticscholar.org/paper/Dynamic-System-Simulation-of-the-KRUSTY-Experiment-Klein-Kimpland/a22de4a62c47ef00e6bbfd7baed6919fe8dcbc6d, 2016.
[48]POSTON D. KRUSTY design and modeling[EB/OL]. https://www.semanticscholar.org/paper/KRUSTY-Design-and-Modeling-Poston/2411b8bb6d3c904927f2be842b93020d775e642a, 2016.
[49]KAPERNICK R J. Thermal stress calculations for heatpipe-cooled reactor power systems[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2003.
[50]刘松涛, 袁园, 魏宗岚, 等. 热管冷却空间反应堆事故特性研究[J]. 核动力工程, 2016, 37(5): 119-124.
LIU S T, YUAN Y, WEI Z L, et al. Accident analysis of heat pipe cooled space reactor system[J]. Nuclear Power Engineering, 2016, 37(5): 119-124.
[51]田晓艳, 江新标, 陈立新, 等. 热管冷却双模式空间堆堆芯稳态热工水力分析程序开发[J]. 核动力工程, 2017, 38(5): 34-39.
TIAN X Y, JIANG X B, CHEN L X, et al. Development of code for steady-state thermal-hydraulic analysis in bimodal space nuclear reactor with heat pipe[J]. Nuclear Power Engineering, 2017, 38(5): 34-39.
[52]李华琪, 江新标, 陈立新, 等. 空间堆堆芯热管蒸气流动计算方法研究[J]. 核动力工程, 2014, 35(6): 37-40.
LI H Q, JIANG X B, CHEN L X, et al. Calculation method for vapor flow in space nuclear reactor heat pipe[J]. Nuclear Power Engineering, 2014, 35(6): 37-40.
[53]MA Y, LIU M, YU H, et al. Neutronic/thermal-mechanical coupling in heat pipe cooled reactor[Z]. 2020.
[54]张胤, 王成龙, 唐思邈, 等. 固态热管反应堆模拟装置热工水力特性分析[J]. 原子能科学技术, 2021, 55(6): 984-990.
ZHANG Y, WANG C L, TANG S M, et al. Analysis of thermal-hydraulic characteristic of solid heat pipe reactor simulator device[J]. Atomic Energy Science and Technology, 2021, 55(6): 984-990.
[55]葛攀和, 李敏, 李杨柳, 等. 温差热电转换型空间热管冷却反应堆瞬态分析程序开发及验证[J]. 原子能科学技术, 2024, 58(1): 69-83.
GE P H, LI M, LI Y L, et al. Development and verification of transient analysis program for thermoelectric space heat pipe cooled reactor[J]. Atomic Energy Science and Technology, 2024, 58(1): 69-83.
[56]王立鹏, 曹璐, 陈森, 等. 基于非结构网格MCNP的KRUSTY热膨胀负反馈计算研究[J]. 核动力工程, 2023, 44(6): 45-53.
WANG L P, CAO L, CHEN S, et al. Study of KRUSTY thermal expansion negative feedback calculation based on unstructured-mesh MCNP[J]. Nuclear Power Engineering, 2023, 44(6): 45-53.
[57]钱雅兰,卓钰铖,李肇华,等. 热管冷却反应堆概率安全评价关键问题研究概述[C]//中国核学会.中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集.北京:科学技术文献出版社,2023.
[58]MARTIN J, HOUTS M G. Overview of non-nuclear testing of the safe, affordable 30 kW fission engine, including end-to-end demonstrator testing[J]. 2003, 504(1): 128-130.
[59]STINSON-BAGBY K L. Realistic testing of the safe affordable fission engine(SAFE-100)thermal simulator using fiber Bragg gratings[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2004.
[60]GODFROY T. Realistic development and testing of fission systems at a non-nuclear testing facility[C]//AIP Conference. Seoul: AIP, 2000.
[61]DYKE M V, HOUTS M, GODFROY T, et al. Phase 1 space fission propulsion system testing and development progress[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2002.
[62]WRIGHT S A. Proposed design and operation of a heat pipe reactor using the Sandia national laboratories annular core test facility and existing UZrH fuel pins[C]//AIP Conference. Albuquerque, New Mexico: AIP, 2005.
[63]GIBSON M, BRIGGS M, SANZI J, et al. Heat pipe powered stirling conversion for the demonstration using flattop fission(DUFF)test[EB/OL]. https://www.semanticscholar.org/paper/Heat-Pipe-Powered-Stirling-Conversion-for-the-Using-Gibson-Briggs/16248fcd1b67e8cbdced19ce2e245c67edafd409, 2013.
[64]MCCLURE P, POSTON D, DIXON D D. Final results of demonstration using flattop fissions(DUFF)experi-ment[EB/OL]. https://www.semanticscholar. org/paper/Final-Results-of-Demonstration-Using-Flattop-(DUFF)-McClure-Poston/418591a222f3e9d113ac30900460b04b8f3a2ba0, 2012.
[65]KLEIN S K, KIMPLAND R H. Dynamic system simulation of the KRUSTY experiment[R]. Los Alamos: LANL, 2016.
[66]BRIGGS M H, GIBSON M A, SANZI J. Electrically heated testing of the kilowatt reactor using stirling technology(KRUSTY)experiment using a depleted uranium core[R]. Los Alamos: LANL, 2017.
[67]余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4): 1-8.
YU H X, MA Y G, ZHANG Z H, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8.
[68]唐思邈, 王成龙, 苏光辉, 等. 小型核电源传热及热电特性实验研究[J]. 核动力工程, 2019, 40(4): 200-202.
TANG S M, WANG C L, SU G H, et al. Experimental research on heat transfer and thermoelectric characteristics of small nuclear power supply facilities[J]. Nuclear Power Engineering, 2019, 40(4): 200-202.
[69]代智文, 刘天才, 王成龙, 等. 空间核反应堆电源热工水力特性研究综述[J]. 原子能科学技术, 2019, 53(7): 1296-1309.
DAI Z W, LIU T C, WANG C L, et al. Research review on thermal-hydraulic performance of space nuclear reactor power[J]. Atomic Energy Science and Technology, 2019, 53(7): 1296-1309.