[1] MILLER G K, PETTI D A, VARACALLE D J, et al. Statistical approach and benchmarking for modeling of multi-dimensional behavior in TRISO-coated fuel particles[J]. Journal of Nuclear Materials, 2003, 317(1): 69-82.
[2]SEN R S, POPE M A, OUGOUAG A M, et al. Assessment of possible cycle lengths for fully encapsulated microstructure fueled light water reactor concepts[J]. Nuclear Engineering and Design, 2013, 255: 310-320.
[3]KING J C, EL-GENK M S. Submersion-subcritical safe space(S4)reactor[J]. Nuclear Engineering and Design, 2006, 236(17): 1759-1777.
[4]ASHCROFT J, ESHELMAN C. Summary of NR program Prometheus efforts[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2007.
[5]ASHCROFT J, BELANGER S, BURDGE W, et al. Key factors influencing the decision on the number of brayton units for the Prometheus space reactor[C]//AIP Conference. Albuquerque, New Mexico:AIP, 2007.
[6]KING J C, EL-GENK M S. Thermal-hydraulic and neutronic analyses of the submersion-subcritical, safe space(S4)reactor[J]. Nuclear Engineering and Design, 2009, 239(12): 2809-2819.
[7]BETZLER B R, ADE B J, JAIN P K, et al. Conceptual design of the transformational challenge reactor[J]. Nuclear Science and Engineering, 2022, 196(12): 1399-1424.
[8]TERRANI K A, JOLLY B C, TRAMMELL M P, et al. Architecture and properties of TCR fuel form[J]. Journal of Nuclear Materials, 2021, 547: 152781.
[9]BURNS J R, BETZLER B R, ADE B, et al. Control element design for the transformational challenge reactor[R]. TN 37831.
[10]BYUN T, GUSSEV M, LACH T,et al.Mechanical properties and deformation behavior of additively manufactured 316L stainless steel(FY2020)[Z]. 2020.
[11]KOYANAGI T, TERRANI K, HARRISON S, et al. Additive manufacturing of silicon carbide for nuclear applications[J]. Journal of Nuclear Materials, 2021, 543: 152577.
[12]WOOLSTENHULME N, CHAPMAN D, CORDES N, et al. TREAT testing of additively manufactured SiC canisters loaded with high density TRISO fuel for the Transformational Challenge Reactor project[J]. Journal of Nuclear Materials, 2023, 575: 154204.
[13]李杨柳, 赵守智, 孙征, 等. 氦氙混合气体冷却反应堆单通道程序开发[J]. 原子能科学技术, 2017, 51(1): 41-45.
LI Y L, ZHAO S Z, SUN Z, et al. Development of single channel program for helium and xenon mixture cooled reactor[J]. Atomic Energy Science and Technology, 2017, 51(1): 41-45.
[14]杨谢, 石磊. 空间核反应堆电源闭式Brayton循环热力学分析[J]. 清华大学学报(自然科学版), 2018, 58(9): 821-826.
YANG X, SHI L. Thermodynamic analysis of closed Brayton cycles for space reactor power system[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 821-826.
[15]BECK J M,PINCOCK L F. High temperature gas-cooled reactors lessons learned applicable to the next generation nuclear plant[Z]. 2011.
[16]刘仕超, 李权, 黄永忠, 等. 中空六棱柱燃料元件热-力学性能研究[J]. 核动力工程, 2022, 43(5): 133-137.
LIU S C, LI Q, HUANG Y Z, et al. Research on the thermal-mechanical performance of hollow hexagonal fuel element[J]. Nuclear Power Engineering, 2022, 43(5): 133-137.
[17]刘仕超, 周毅, 李垣明, 等. 多物理场耦合 TRISO 颗粒堆内行为研究[J]. 原子能科学技术, 2022, 56(Sup.1): 100-108.
[18]LUCUTA P G, MATZKE H, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2/3): 166-180.
[19]SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1/2/3): 329-377.
[20]POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1): 74-82.