|Table of Contents|

Conceptual design of a nuclear-powered propulsion system utilizing a multi-stage compression Brayton cycle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
126-139
Research Field:
目次
Publishing date:

Info

Title:
Conceptual design of a nuclear-powered propulsion system utilizing a multi-stage compression Brayton cycle
Author(s):
LI Keyi1 YOU Ersheng2 ZHOU Ziyang1 ZHANG Haochun1
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. China Nuclear Power Research and Design Institute, Chengdu 610213, China
Keywords:
multi-stage compression Brayton cycle binary gas mixture sensitivity analysis Sobol-Sequence
PACS:
TM918
DOI:
10.3969/j.issn.1672-9374.2024.04.013
Abstract:
Regarding the application and necessity of space nuclear power in deep space exploration, the system efficiency can be enhanced and the performance requirements for the compressor can be reduced by increasing the number of compressor stages on the basis of a simple regenerative Brayton cycle, thereby its reliability is improved. By establishing a helium-xenon property model and a thermodynamic cycle model, and conducting a sensitivity analysis based on the Sobol method, the impact of parameters such as the temperature at key cycle nodes, turbomachinery efficiency, and compressor pressure ratio on cycle thermal efficiency and specific mass was studied. In addition, a multi-objective optimization using a multi-objective particle swarm algorithm was performed to obtain the Pareto set of key performance parameters for the system. The results indicate that under identical parameter conditions, the thermal efficiency of the multi-stage compression Brayton cycle is 22.33%, which is superior to the 17.75% thermal efficiency of the single-stage compressor Brayton cycle. Increasing the number of compressor stages effectively improves the net efficiency of the system, the load on the compressor is reduced, and a theoretical basis is provided for the design of efficient space nuclear power systems.

References:

[1] 李臻, 宋泽滨. 2023年中国航天发射回顾[J]. 中国航天, 2024(2): 37-45.
LI Z, SONG Z B. Review of China space launch activities in 2023[J]. Aerospace China, 2024(2): 37-45.
[2]MIAO X Y, ZHANG H C, WANG Q, et al. Optimum design of nuclear electric propulsion spacecraft for deep space exploration[J]. Energy Reports, 2022, 8: 9629-9641.
[3]胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报, 2017, 4(5): 430-443.
HU G, ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration, 2017, 4(5): 430-443.
[4]GALLO B M, EL-GENK M S. Brayton rotating units for space reactor power systems[J]. Energy Conversion and Management, 2009, 50(9): 2210-2232.
[5]CHUPRINA R I. Thermal-transient analysis of the Brayton Isotope Power System(BIPS)[R]. Washington: U.S. Department of Energy, 1977.
[6]LEVINE B. Space nuclear power plant pre-conceptual design report, for information[EB/OL]. https://www.semanticscholar.org/paper/Space-Nuclear-Power-Plant-Pre-Conceptual-Design-For-Levine/619666c06cc55b8c65aa7d7a6c31ef7bede2b09c, 2006.
[7]许春阳. 俄罗斯兆瓦级空间核动力装置研发进展[R].北京:中国核科技信息与经济研究院, 2012.
[8]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[9]FAN S Q, LI M H, LI S Z, et al. Thermodynamic analysis and optimization of a Stirling cycle for lunar surface nuclear power system[J]. Applied Thermal Engineering, 2017, 111: 60-67.
[10]TORO C, LIOR N. Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation[J]. Energy, 2017, 120: 549-564.
[11]马同玲, 张扬军, 王正, 等. 闭式布雷顿循环发电系统热力过程建模及其参数影响研究[J]. 推进技术, 2022, 43(7): 332-340.
MA T L, ZHANG Y J, WANG Z, et al. Thermodynamic process modeling and parameter influence of closed brayton cycle power generation system[J]. Journal of Propulsion Technology, 2022, 43(7): 332-340.
[12]田志涛, 郑群, 姜斌. 氦氙混合离心压气机设计与分析[J]. 风机技术, 2018, 60(3): 14-19.
TIAN Z T, ZHENG Q, JIANG B. Design and analysis of helium and xenon binary mixture gas centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2018, 60(3): 14-19.
[13]李智, 杨小勇, 王捷, 等. 空间反应堆布雷顿循环热力学优化分析[J]. 原子能科学技术, 2017, 51(7): 1173-1180.
LI Z, YANG X Y, WANG J, et al. Thermodynamic optimization and analysis of brayton-cycle system for space power reactor[J]. Atomic Energy Science and Technology, 2017, 51(7): 1173-1180.
[14]张昊春, 冯致远, 蔡书宜, 等. 空间核动力装置斯特林转换系统的热力学性能优化分析[J]. 核动力工程, 2016, 37(3): 146-151.
ZHANG H C, FENG Z Y, CAI S Y, et al. Optimizing analysis of thermodynamic performance optimizing analysis of stirling conversion system for space nuclear power installation[J]. Nuclear Power Engineering, 2016, 37(3): 146-151.
[15]郭凯伦, 王成龙, 秋穗正, 等. 兆瓦级核电推进系统布雷顿循环热电转换特性分析[J]. 原子能科学技术, 2019, 53(1): 16-23.
GUO K L, WANG C L, QIU S Z, et al. Analysis on thermoelectric conversion characteristic of brayton cycle in megawatt-class nuclear electric propulsion system[J]. Atomic Energy Science and Technology, 2019, 53(1): 16-23.
[16]王浩明, 薛翔, 张银勇, 等. 空间闭式布雷顿循环旁路调节特性分析[J]. 火箭推进, 2021, 47(2): 61-67.
WANG H M, XUE X, ZHANG Y Y, et al. Analysis of bypass regulation characteristics for space closed Brayton cycle system[J]. Journal of Rocket Propulsion, 2021, 47(2): 61-67.
[17]MIAO X Y, ZHANG H C, ZHANG D, et al. Properties of Nitrous Oxide and Helium mixtures for space nuclear recompression Brayton cycle[J]. Energy Reports, 2022, 8: 2480-2489.
[18]MIAO X Y, ZHANG H C, SUN W B, et al. Optimization of a recompression supercritical nitrous oxide and helium Brayton cycle for space nuclear system[J]. Energy, 2022, 242: 123023.
[19]王志伟. 基于空间核电源系统的氦氙混合工质布雷顿循环特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
WANG Z W. Study on Brayton cycle characteristics of helium-xenon mixture based on space nuclear power supply system[D]. Harbin: Harbin Institute of Technology, 2021.
[20]TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed brayton cycle space applications[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). Reston, Virigina: AIAA, 2006.
[21]EL-GENK M S, TOURNIER J M. Noble-gas binary mixtures for closed-brayton-cycle space reactor power systems[J]. Journal of Propulsion and Power, 2007, 23(4): 863-873.
[22]EL-GENK M, TOURNIER J M. Selection of noble gas binary mixtures for brayton space nuclear power systems[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). Reston, Virginia: AIAA, 2006.
[23]张秀, 张昊春, 刘秀婷, 等. 回热式闭式空间核能布雷顿循环系统性能分析及优化[J]. 热科学与技术, 2021, 20(1): 79-85.
ZHANG X, ZHANG H C, LIU X T, et al. Performance analysis and optimization of a closed regenerative Brayton cycle for nuclear space power system[J]. Journal of Thermal Science and Technology, 2021, 20(1): 79-85.
[24]MIAO X Y, ZHANG H C, WANG Q, et al. Mass optimization of a recompression supercritical nitrous oxide and helium power system for space exploration[J]. Progress in Nuclear Energy, 2023, 158: 104606.
[25]游尔胜, 佘顶, 石磊. Brayton空间核能系统质量估算模型[J]. 清华大学学报(自然科学版), 2018, 58(5): 450-455.
YOU E S, SHE D, SHI L. Mass estimation model for Brayton cycle space nuclear power systems[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 450-455.
[26]刘德高, 刘向宇, 胡林生, 等. 基于Sobol法的阮桥闸安全影响因素敏感性分析[J]. 四川水利, 2023, 44(6): 39-41.
LIU D G, LIU X Y, HU L S, et al. Sensitivity analysis of safety influencing factors of Ruanqiao sluice gate based on Sobol method[J]. Sichuan Water Resources, 2023, 44(6): 39-41.
[27]叶倩琳, 王万良, 王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
YE Q L, WANG W L, WANG Z. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of Zhejiang University(Engineering Science), 2024, 58(6): 1107-1120.

Memo

Memo:
-
Last Update: 1900-01-01