|Table of Contents|

Design of drive unit in closed Brayton system for 10 kWe space reactor(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
140-148
Research Field:
目次
Publishing date:

Info

Title:
Design of drive unit in closed Brayton system for 10 kWe space reactor
Author(s):
LIAN Junwei12 HE Lei2 LIN Pengcheng2 CHE Xuejiao2 ZHOU Yonghua2
1. Laboratory of Science and Technology on Cryogenic Liquid Propulsion of China Aerospace Science andTechnology Corporation Co., Ltd., Beijing 100076, China; 2. Beijing Aerospace Propulsion Institute, Beijing 100076, China
Keywords:
space nuclear reactor Brayton system centrifugal compressor gas foil bearing rod fastening rotor
PACS:
TH133
DOI:
10.3969/j.issn.1672-9374.2024.04.014
Abstract:
According to the characteristics of high energy density and long life of space reactor, a design scheme of centrifugal compressor driven by gas foil bearing and high efficiency radial flow impeller is proposed. Based on the specific flow rate, pressure, power and efficiency, the aerodynamic design of the impeller is carried out, and the high efficiency compressor and the high efficiency radial turbine model are obtained. Based on the finite element method, the top foil deformation of the radial air foil bearing is expressed by Euler beam and thick plate model, and solved by the Reynolds equation. The calculation results of the thick plate model accurately reflect the deformation of the foil along the axial direction. It is more reasonable to obtain the dynamic stiffness and damping coefficient of the bearing based on this thick plate model. Based on the thick plate model, the dynamic stiffness and damping coefficient of the bearing are obtained. In this paper, the critical speed of rotor system and the minimum take-off speed of closed Brayton system are obtained by using a reasonable bearing model. The rotor system has better stability under rated conditions from the linear axis trajectory. At last, the load-bearing characteristics of thrust foil bearing are analyzed, and the attention points for assembly are put forward. This research provides theoretical guidance for the development of a prototype driving unit of 10 kWe space reactor closed Brayton system.

References:

[1] 周彪, 吉宇, 孙俊, 等. 空间核反应堆电源需求分析研究[J]. 原子能科学技术, 2020, 54(10): 1912-1923.
ZHOU B, JI Y, SUN J, et al. Research on space nuclear reactor power demand analysis[J]. Atomic Energy Science and Technology, 2020, 54(10): 1912-1923.
[2]李永, 周成, 吕征, 等. 大功率空间核电推进技术研究进展[J]. 推进技术, 2020, 41(1): 12-27.
LI Y, ZHOU C, LYU Z, et al. Progress on high power space nuclear electric propulsion technology development[J]. Journal of Propulsion Technology, 2020, 41(1): 12-27.
[3]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[4]VOSS S S. SNAP reator overview[R]. [S.l.]: Force Weapons Laboratory, 1984.
[5]IAEA. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[R]. Vienna:IAEA, 2005.
[6]TAYLOR R. Prometheus project final report[R]. Pasadena, CA: Jet Propulsion Laboratory, 2005.
[7]MASON L S. Kilopower: small fission power systems for Mars and beyond[R]. Washington D C: National Aeronautics and Space Administration, 2017.
[8]ZAKIROV V, PAVSHOOK V. Feasibility of the recent Russian nuclear electric propulsion concept: 2010[J]. Nuclear Engineering and Design, 2011, 241(5): 1529-1537.
[9]LUDWICZAK D R. Verification of a 2 kWe closed-brayton-cycle power conversion system mechanical dynamic model[R]. [S.l.]: Glenn Research Center, 2005.
[10]田志涛, 郑群, 姜斌. 氦氙混合离心压气机设计与分析[J]. 风机技术, 2018, 60(3): 14-19.
TIAN Z T, ZHENG Q, JIANG B. Design and analysis of helium and xenon binary mixture gas centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2018, 60(3): 14-19.
[11]田志涛, 郑群, 姜斌, 等. 氦压气机转子叶顶间隙结构研究[J]. 哈尔滨工程大学学报, 2019, 40(5): 938-943.
TIAN Z T, ZHENG Q, JIANG B, et al. Investigation on the tip clearance structure of a helium compressor rotor[J]. Journal of Harbin Engineering University, 2019, 40(5): 938-943.
[12]李智, 杨小勇, 王捷, 等. 空间反应堆Brayton循环的热力学特性[J]. 清华大学学报(自然科学版), 2017, 57(5): 537-543.
LI Z, YANG X Y, WANG J, et al. Thermodynamic analysis of a Brayton cycle system for a space power reactor[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 537-543.
[13]黄笛, 李仲春, 余霖, 等. 氦氙混合比例对堆内通道流动换热特性影响[J]. 哈尔滨工程大学学报, 2021, 42(5): 745-750.
HUANG D, LI Z C, YU L, et al. Influence of helium-xenon mixing ratio on flow heat transfer characteristics of reactor channels[J]. Journal of Harbin Engineering University, 2021, 42(5): 745-750.
[14]郭凯伦, 王成龙, 秋穗正, 等. 兆瓦级核电推进系统布雷顿循环热电转换特性分析[J]. 原子能科学技术, 2019, 53(1): 16-23.
GUO K L, WANG C L, QIU S Z, et al. Analysis on thermoelectric conversion characteristic of brayton cycle in megawatt-class nuclear electric propulsion system[J]. Atomic Energy Science and Technology, 2019, 53(1): 16-23.
[15]李强,胡古,杨夷. 闭式布雷顿循环He-Xe回路与高温合金的相容性研究[C]//中国核学会2017年学术年会论文集. 北京: 中国核学会, 2017.
[16]张秀, 张昊春, 刘秀婷, 等. 回热式闭式空间核能布雷顿循环系统性能分析及优化[J]. 热科学与技术, 2021, 20(1): 79-85.
ZHANG X, ZHANG H C, LIU X T, et al. Performance analysis and optimization of a closed regenerative Brayton cycle for nuclear space power system[J]. Journal of Thermal Science and Technology, 2021, 20(1): 79-85.
[17]王浩明, 陈金利, 王园丁, 等. 基于运行状态的氦氙布雷顿循环气体组分分析[J]. 火箭推进, 2023, 49(3): 76-82.
WANG H M, CHEN J L, WANG Y D, et al. Gas composition analysis of helium-xenon Brayton cycle based on operating status[J]. Journal of Rocket Propulsion, 2023, 49(3): 76-82.
[18]王浩明, 薛翔, 张银勇, 等. 空间闭式布雷顿循环旁路调节特性分析[J]. 火箭推进, 2021, 47(2): 61-67.
WANG H M, XUE X, ZHANG Y Y, et al. Analysis of bypass regulation characteristics for space closed Brayton cycle system[J]. Journal of Rocket Propulsion, 2021, 47(2): 61-67.
[19]薛翔, 杜磊, 王浩明, 等. 闭式布雷顿循环核心机调控过程仿真分析[J]. 火箭推进, 2021, 47(5): 49-55.
XUE X, DU L, WANG H M, et al. Simulation analysis of adjustment and control process for core machine in closed Brayton cycle[J]. Journal of Rocket Propulsion, 2021, 47(5): 49-55.
[20]顾家柳.转子动力学[M]. 北京:国防工业出版社,1985.

Memo

Memo:
-
Last Update: 1900-01-01