|Table of Contents|

Development status and trend of novel green monopropellant(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
1-22
Research Field:
目次
Publishing date:

Info

Title:
Development status and trend of novel green monopropellant
Author(s):
BAO Shiguo1MA Tianju2TIAN Guoqing1XIANG Kai1XUE Wei3SUN Haiyun1FANG Tao1ZHANG Xing3
1.Beijing Key Laboratory of Research and Application for Aerospace Green Propellants,Beijing Institute of Aerospace Testing Technology, Beijing 100074, China; 2.Academy of Aerospace Propulsion Technology, Xi'an 710100, China; 3.China Academy of Aerospace Science and Innovation, Beijing 100088, China
Keywords:
the novel green monopropellant propulsion system HAN-based monopropellant ADN-based monopropellant attitude-orbit control system
PACS:
V513
DOI:
10.3969/j.issn.1672-9374.2024.05.001
Abstract:
With the increasing concern about ecological environment, safety and the development of space propulsion technology, a new requirement for green or non-toxic propellant has been put forward, and the novel green monopropellant propulsion system has become one of the important research directions of space propulsion. Hydroxyammonium nitrate-based monopropellant(HAN-based monopropellant)and dinitrate ammonium-based monopropellant(ADN-based monopropellant)have the characteristics of green and pollution-free, high density, adjustable specific impulse performance, low saturation vapour pressure and low maintenance cost, which can be used in the attitude control system of satellites, spacecraft, launch vehicles, etc. Both HAN-based monopropellant and ADN-based monopropellant have been demonstrated several times, and have attracted much attention in the aerospace field.

References:

[1] 李小芳. 无毒单组元发动机技术研究[J]. 上海航天, 2001, 18(3): 26-31.
LI X F. Non-toxic monopropellant engine technology development[J]. Aerospace Shanghai, 2001, 18(3): 26-31.
[2]SCHNEIDER S, HAWKINS T, AHMEDAND Y, et al. Cataytic hyoergolic bipropellants[J]. Journal of Cutaneous Pathology, 2014, 8(758): 53181.
[3]KANG H, PARK S, PARK Y, et al. Ignition-delay measurement for drop test with hypergolic propellants: Reactive fuels and hydrogen peroxide[J]. Combustion and Flame, 2020, 217: 306-313.
[4]周汉申. 单组元液体火箭发动机设计与研究[M]. 北京: 中国宇航出版社, 2009.
[5]BADGUJAR D M, TALAWAR M B, ASTHANA S N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008, 151(2/3): 289-305.
[6]方杰,王尊,严浩,等.双模式离子液体推进剂真空条件催化点火特性[J].火箭推进,2022,48(5):1-8.
FANG J, WANG Z, YAN H,et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[7]HE J X, WANG Y T, CAO Y L, et al. Development direction of high energetic oxidizers for solid composite propellants[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 286-289.
[8]何金选, 王业腾, 曹一林, 等. 固体推进剂高能氧化剂的发展方向[J]. 含能材料, 2018, 26(4): 286-289.
HE J X, WANG Y T, CAO Y L. Development direction of high energy oxidants for solid propellants[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 286-289.
[9]贺芳, 方涛, 李亚裕, 等. 新型无毒液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[10]LEMMER K. Propulsion for cubesats[J]. Acta Astronautica, 2017, 134: 231-243.
[11]TUMMALA A R, DUTTA A. An overview of cube-satellite propulsion technologies and trends[J]. Aerospace, 2017, 4(4): 58.
[12]FRISBEE R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power, 2003, 19(6): 1129-1154.
[13]白梅杉,於希乔,陆文杰,等.硝酸羟胺发动机喷注器特种流量分配方法[J].火箭推进,2023,49(5):99-106.
BAI M S, YU X Q,LU W J, et al. Injector flow distribution method of a hydroxylamine nitrate thruster[J]. Journal of Rocket Propulsion, 2023,49(5):99-106.
[14]胡平信, 刘国球. 液体火箭发动机的技术发展与展望[J]. 导弹与航天运载技术, 1998(2): 1-10.
HU P X, LIU G Q. Technological development and prospect for liquid rocket engines[J]. Missiles and Space Vehicles, 1998(2):1-10.
[15]沈赤兵, 王克昌, 陈启智. 国外小推力液体火箭发动机的最新进展[J]. 上海航天, 1996, 12(3): 41-45.
SHEN C B, WANG K C, CHEN Q Z. The latest prograss in smallthrust liquid rocket engines abroad[J]. Aerospace Shanghai, 1996, 12(3): 41-45.
[16]周悦, 公绪滨, 方涛. 硝酸羟铵基无毒单组元推进剂应用探讨[J]. 导弹与航天运载技术, 2015(4): 32-35.
ZHOU Y, GONG X B, FANG T. Applicable discussion on han-based nontoxic monopropellant[J]. Missiles and Space Vehicles, 2015(4): 32-35.
[17]方涛, 贺芳, 盛云龙, 等. 硝酸羟铵基单组元推进剂研究[C]//第三届全国化学推进剂学术会议. 张家界: 中国化学会, 2007.
[18]SUTTON G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power, 2003, 19(6): 978-1007.
[19]MITTENDORF D, FACINELLI W, SARPOLUS R, et al. Experimental development of a monopropellant for space propulsion systems[C]//33rd Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1997.
[20]夏连根, 赵许群, 王晓东. 硝酸羟胺单元推进技术研究进展[C]//第四届全国化学推进剂学术交流会. 酒泉: 中国化学会, 2009.
[21]MEINHARDT D, CHRISTOFFERSON S, WUCHERER E, et al. Performance and life testing of small HAN thrusters[C]//35th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1999.
[22]WUCHERER E, CHRISTOFFERSON S, REED B. Assessment of high performance HAN-monopropellants[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2000.
[23]ZUBE D, CHRISTOFFERSON S, WUCHERER E, et al. Evaluation of HAN-based propellant blends[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2003.
[24]王宏伟, 王建伟. AF-315液体单元推进剂研究进展[J]. 化学推进剂与高分子材料, 2010, 8(5): 6-9.
WANG H W, WANG J W. Research progress on AF-315 liquid monopropellant[J]. Chemical Propellants & Polymeric Materials, 2010, 8(5): 6-9.
[25]SACKHEIM R L. Overview of United States rocket propulsion technology and associated space transportation systems[J]. Journal of Propulsion and Power, 2006, 22(6): 1310-1332.
[26]ADAM B. Reduced toxicity high performance monopropellant[Z]. 2010.
[27]NOBUHIKO T, TETSUYA M, KATSUMI F, et al. The “greening” of spacecraft reaction control systems[Z]. 2011.
[28]鲍世国, 公绪滨, 陈艺, 等. 一种HAN基单元推进剂及催化分解性能研究[J]. 火箭推进, 2018, 44(2): 39-45.
BAO S G, GONG X B, CHEN Y, et al. Investigation of a novel HAN-based monopropellant and its catalytic decomposition performance[J]. Journal of Rocket Propulsion, 2018, 44(2): 39-45.
[29]白梅杉, 戴佳, 姚天亮, 等. HAN基无毒单元发动机常温启动技术研究[J]. 宇航总体技术, 2019, 3(2): 36-43.
BAI M S, DAI J, YAO T L, et al. Research of HAN-based green monopropellant thruster start under normal temperature[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 36-43.
[30]CAVENDER D P, MARSHALL W M, MAYNARD A. NASA green propulsion roadmap[C]//2018 Joint Propulsion Conference. Reston, Virginia: AIAA, 2018.
[31]BROWN N. First successful NCADE flight trial proves key technology[Z]. 2008.
[32]MCLEAN C H. Green propellant infusion mission program overview[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[33]MCLEAN C H. Green propellant infusion mission program development and technology maturation[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2014.
[34]HARBAUGH J. NASA's green propellant infusion mission nears completion[Z]. 2020.
[35]TSAY M, FENG C, ZWAHLEN J. System-level demonstration of busek's 1U CubeSat green propulsion module “AMAC”[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2017.
[36]DAWN A, GRAYSON H. Design of a green monopropellant propulsion system for the lunar flashlight cubesat mission[C]//34th Annual Small Satellite Conference.[S. l. ]:[s. n. ], 2020.
[37]ANDREWS D, LIGHTSEY E. Design of a green monopropellant propulsion system for the lunar flashlight mission[EB/OL]. https: //www. semanticscholar. org/paper/Design-of-a-Green-Monopropellant-Propulsion-System-Andrews-Lightsey/13849f425ddb3c05e00d41decbf93fb9ba0465e0, 2019.
[38]SARAH F. NASA selects small businesses for orbital debris, surface dust tech[EB/OL]. http: //www. nasa. gov/directorates/spacetech/sbir_sttr/nasa-selects-small-businesses-for-orbital-debris-surface-dust-tech, 2023.
[39]Rubicon's ASCENT propulsion system to power NASA dual mode project[EB/OL]. https: //www. rubicon. space/news/19/rubicon-s-ascent-propulsion-system-to- power-nasa-dual-mode-project, 2024.
[40]Dual mode green monopropellant propulsion system for interplanetary missions ISBIR. gov[EB/OL]. https: //www. sbir. gov/node/2117115, 2024.
[41]CLARENCE O. Flight works creates modular propulsion system for AFRL with $5.7M contract[EB/OL]. https: //www. spacedaily. com/reports/Flight_Works_creates_modular_propulsion_system_for_AFRL_with_5_7M_contract_999. html, 2024.
[42]SHINJI I, YOSHIKI M. Development status of a hydrazine alternative and low-cost thruster using HAN/HN-based green propellant[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.[S. l. ]:[s. n. ], 2017.
[43]HIKARU U, DAIJIRO S, TSUTOMU T, et al. Green propulsion systems for satellites: development of thrusters and propulsion Systems Using Low-Toxicity Propellants[J]. Mitsubishi Heavy Industries Technical Review, 2019, 56(1): 1-7.
[44]HORI K, KATSUMI T, SAWAI S, et al. HAN-based green propellant, SHP163: its R&D and test in space[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(9): 1080-1083.
[45]黑猫武器说. 返回舱直径从4.5米升级为5米, 我国新飞船这么大?[EB/OL]. https: //mq. mbd. baidu. com/r/1dTy68DovhS?f=cp&u=fe90fab8ac9d8b36, 2023.
[46]陈兴强, 张志勇, 滕奕刚, 等. 可用于替代肼的2种绿色单组元液体推进剂HAN、ADN[J]. 化学推进剂与高分子材料, 2011, 9(4): 63-66.
CHEN X Q, ZHANG Z Y, TENG Y G, et al. Two kinds of green liquid monopropellants HAN, ADN for replacing hydrazine[J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 63-66.
[47]NAGAMACHI M Y, OLIVEIRA J I S, KAWAMOTO A M, et al. AND: the new oxidizer around the corner for an environmentally friendly smokeless propellant[J]. Journal of Aerospace Technology and Management, 2009, 1(2): 153-160.
[48]刘波, 刘少武, 于慧芳, 等. 二硝酰胺铵防吸湿技术研究进展[J]. 化学推进剂与高分子材料, 2011, 9(6): 57-60.
LIU B, LIU S W, YU H F, et al. Research progress in anti-hygroscopicity of ammonium dinitramide[J]. Chemical Propellants & Polymeric Materials, 2011, 9(6): 57-60.
[49]周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2): 87-92.
ZHOU X Y, TANG G, PANG A M. Research progress of ADN propellants abroad[J]. Aerospace Technology, 2017(2): 87-92.
[50]NEGRI M, WILHELM M, HENDRICH C, et al. New technologies for ammonium dinitramide based monopropellant thrusters: The project RHEFORM[J]. Acta Astronautica, 2018, 143: 105-117.
[51]WILHELM M, NEGRI M, CIEZKI H, et al. Preliminary tests on thermal ignition of ADN-based liquid monopropellants[J]. Acta Astronautica, 2019, 158: 388-396.
[52]陈兴强, 王学敏, 许华新, 等. ADN基液体单组元推进剂配方国外研究进展[J]. 化学推进剂与高分子材料, 2018, 16(1): 19-23.
CHEN X Q, WANG X M, XU H X, et al. Foreign research progress of ADN-based liquid monopropellant formulations[J]. Chemical Propellants & Polymeric Materials, 2018, 16(1): 19-23.
[53]WINGBORG N. Ammonium dinitramide-water: Interaction and properties[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1582-1586.
[54]ANFLO K, GRONLAND T, WINGBORG N. Development and testing of ADN-based monopropellants in small rocket engines[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2000.
[55]ANFLO K, GRONLAND T A. Towards green propulsion for spacecraft with ADN-based monopropellants[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2002.
[56]WURDAK M, STRAUSS F, WERLING L, et al. Determination of fluid properties of the green propellant FLP-106 and related material and component testing with regard to applications in space missions[EB/OL]. https: //www. semanticscholar. org/paper/Determination-of-fluid-properties-of-the-green-and-Wurdak-Strauss/c87cdcf802e1c4cb1540e8270f689f16ae243cc0, 2012.
[57]NEGRI M, GRUND L. Replacement of hydrazine overview and first results of the H2020 project rheform[C]//6th European Conference for Aeronautics and Space Sciences(EUCASS).[S. l. ]:[s. n. ], 2015.
[58]THORMAHLEN P, ANFLO K. Low-temperature operational and storable ammonium dinitramide based liquid monopropellant blends: WO2012/166046[P]. 2012-12-06.
[59]IWAIK, NOZOE K. Liquid propellant: WO2014/084344[P]. 2014-06-05.
[60]WITT W, REINELT K. Liquid propellant: US5047098[P]. 1991-09-10.
[61]TAKAHASHI T, IWAI K. Liquid propellant and production method therefor: JP2016069228[P]. 2016-05-09.
[62]松永浩貴, 塩田謙人, 伊里友一朗. イオン液体を用いた新規ロケット推進剤の研究開発[R]. JAXA-RR-16-006, 2016.
[63]IDE Y, TAKAHASHI T, IWAI K, et al. Potential of ADN-based ionic liquid propellant for spacecraft propulsion[J]. Procedia Engineering, 2015, 99: 332-337.
[64]BOHN M A, ANIOL J, PONTIUS H, et al. Thermal stability and stabilization of ADN-water gels[C]//International Annual Conference of Information and Communication Technology. [S. l. ]:[s. n. ], 2007.
[65]张万生, 王晓东, 夏连根, 等. 绿色ADN液体推进剂应用研究进展[C]//第八届全国化学推进剂学术会议. 青岛: 中国化学会, 2017.
[66]姚兆普, 张伟, 王梦, 等. ADN基液体空间发动机的实验研究与在轨验证[J]. 火箭推进, 2018, 44(1): 8-14.
YAO Z P, ZHANG W, WANG M, et al. Experimental investigation and on-orbit flying validation of an ADN-based liquid space engine[J]. Journal of Rocket Propulsion, 2018, 44(1): 8-14.
[67]ANFLO K, CROWE B. In-space demonstration of an ADN-based propulsion system[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2011.
[68]ANFLO K, PERSSON S, THORMAHLEN P, et al. Flight demonstration of an ADN-based propulsion system on the PRISMA satellite[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2006.
[69]ANFLO K, MÖLLERBERG R. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite[J]. Acta Astronautica, 2009, 65(9/10): 1238-1249.
[70]MANI K V, CERVONE A, TOPPUTO F. Combined chemical-electric propulsion for a stand-alone Mars CubeSat[J]. Journal of Spacecraft and Rockets, 2019, 56(6): 1816-1830.
[71]姚天亮, 邱鑫, 刘川, 等. “绿色”高性能HAN 基单元推力器非催化点火技术研究进展[J]. 空间推进, 2015, 1(9): 1-7.
YAO T L, QIU X, LIU C, et al. Research progress on non-catalytic ignition technology of “green” high-performance HAN-based unit thrusters[J]. Space Propulsion, 2015, 1(9): 1-7.
[72]LARSSON A, WINGBORG N, ELFSBERG M, et al. Electrical ignition of new environmental-friendly propellants for rockets and spacecrafts[C]//2005 IEEE Pulsed Power Conference. Monterey, CA: IEEE, 2005.
[73]MENG H, KHARE P, RISHA G, et al. Decomposition and ignition of HAN-based monopropellants by electrolysis[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2009.
[74]WU M H, YETTER R, YANG V. Development and characterization of ceramic micro chemical propulsion and combustion systems[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2008.
[75]余永刚, 李明, 周彦煌, 等. 液体推进剂液滴电点火特性的实验研究[J]. 含能材料, 2008, 16(5): 625-628.
YU Y G, LI M, ZHOU Y H, et al. Experimental study on electrical ignition properties of liquid propellant droplet[J]. Chinese Journal of Energetic Materials, 2008, 16(5): 625-628.
[76]THRASHER J, WILLIAMS S, TAKAHASHI P, et al. Pulsed plasma thruster development using a novel HAN-based green electric monopropellant[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016.
[77]WILHELM M, NEGRI M, CIEZKI H, et al. Preliminary tests on thermal ignition of ADN-based liquid monopropellants[J]. Acta Astronautica, 2019, 158: 388-396.
[78]NEGRI M, WILHELM M, CIEZKI H K. Thermal ignition of ADN-based propellants[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(9): 1096-1106.
[79]李雷, 李国岫, 李洪萌, 等. 不同电极材料下ADN基液体推进剂电点火特性的实验研究[J]. 推进技术, 2020, 41(1): 65-72.
LI L, LI G X, LI H M, et al. Experimental study of electrical ignition characteristics of ADN-based liquid propellants with different electrode materials[J]. Journal of Propulsion Technology, 2020, 41(1): 65-72.
[80]LI L, LI G X, LI H M, et al. Effects of ignition voltage and electrode structure on electric ignition and combustion characteristics of Ammonium Dinitramide(ADN)-based liquid propellants in electric ignition mode in inert gas environment[J]. Chinese Journal of Aeronautics, 2024, 37(4): 229-242.
[81]KAKAMI A, IDETA K, ISHIBASHI T, et al. One Newton thruster by plasma-assisted combustion of HAN-based monopropellant[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: AIAA, 2012.
[82]IIZUKA T, SHINDO T, SATO J, et al. Basic characteristics of reaction initiation system using dishcharge plasma for 1 N-class thruster with green propellants[EB/OL]. https: //www. semanticscholar. org/paper/Basic-Characteristics-of-Reaction-Initiation-System-Iizuka-Shindo/1355d6065cbc518ffc34215e6d8646888d4d8155, 2013.
[83]ALFANO A J, MILLS J D, VAGHJIANI G L. Resonant laser ignition study of HAN-HEHN propellant mixture[J]. Combustion Science and Technology, 2009, 181(6): 902-913.
[84]LANI B P. Microwave ignition of green monopropell-ants[D]. Pennsylvania: The Pennsylvania State University, 2014.
[85]MATSUNAGA H, KATOH K, HABU H, et al. Ignition of the droplets of ammonium dinitramide-based high-energy ionic liquid[J]. Transactions of the Japan Society of Aeronautical and Space Sciences, Aerospace Technology Japan, 2020, 18(6): 323-329.
[86]ITOUYAMA N, MATSUNAGA H, HABU H. Characterization of continuous-wave laser heating ignition of ammonium dinitramide-based ionic liquids with carbon fibers[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(6): 988-996.
[87]CHENG J, CAO J L, LI F W, et al. Microwave controlled ignition and combustion characteristics of ADN-based ionic liquid propellant with fast response and environmental friendliness[J]. Chemical Engineering Journal, 2023, 471: 144412.
[88]HOU Y Y, YU Y S, LI Y, et al. Experimental study on microwave ignition of ADN-based liquid propellant droplets doped with alumina nanoparticles[J]. Journal of Physics D: Applied Physics, 2024, 57(14): 145505.
[89]WHITMORE S A, MERKLEY D P, JUDSON M I, et al. Development and testing of a green monopropellant ignition system[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[90]WHITMORE S A, MERKLEY S L, SPURRIER Z S, et al. Development of a power efficient, restartable, “green” propellant thruster for small spacecraft and satellites[Z]. 2015.
[91]WHITMORE S A, MERKLEY D P, EILERS S D, et al. Hydrocarbon-seeded ignition system for small spacecraft thrusters using ionic liquid propellants[Z]. 2013.
[92]JOSHI P B, PIPER L G, OAKES D B, et al. Fast ignition and sustained combustion of ionic liquids: US20130205751[P]. 2013-08-15.

Memo

Memo:
-
Last Update: 1900-01-01