[1] 李小芳. 无毒单组元发动机技术研究[J]. 上海航天, 2001, 18(3): 26-31.
LI X F. Non-toxic monopropellant engine technology development[J]. Aerospace Shanghai, 2001, 18(3): 26-31.
[2]SCHNEIDER S, HAWKINS T, AHMEDAND Y, et al. Cataytic hyoergolic bipropellants[J]. Journal of Cutaneous Pathology, 2014, 8(758): 53181.
[3]KANG H, PARK S, PARK Y, et al. Ignition-delay measurement for drop test with hypergolic propellants: Reactive fuels and hydrogen peroxide[J]. Combustion and Flame, 2020, 217: 306-313.
[4]周汉申. 单组元液体火箭发动机设计与研究[M]. 北京: 中国宇航出版社, 2009.
[5]BADGUJAR D M, TALAWAR M B, ASTHANA S N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008, 151(2/3): 289-305.
[6]方杰,王尊,严浩,等.双模式离子液体推进剂真空条件催化点火特性[J].火箭推进,2022,48(5):1-8.
FANG J, WANG Z, YAN H,et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[7]HE J X, WANG Y T, CAO Y L, et al. Development direction of high energetic oxidizers for solid composite propellants[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 286-289.
[8]何金选, 王业腾, 曹一林, 等. 固体推进剂高能氧化剂的发展方向[J]. 含能材料, 2018, 26(4): 286-289.
HE J X, WANG Y T, CAO Y L. Development direction of high energy oxidants for solid propellants[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 286-289.
[9]贺芳, 方涛, 李亚裕, 等. 新型无毒液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[10]LEMMER K. Propulsion for cubesats[J]. Acta Astronautica, 2017, 134: 231-243.
[11]TUMMALA A R, DUTTA A. An overview of cube-satellite propulsion technologies and trends[J]. Aerospace, 2017, 4(4): 58.
[12]FRISBEE R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power, 2003, 19(6): 1129-1154.
[13]白梅杉,於希乔,陆文杰,等.硝酸羟胺发动机喷注器特种流量分配方法[J].火箭推进,2023,49(5):99-106.
BAI M S, YU X Q,LU W J, et al. Injector flow distribution method of a hydroxylamine nitrate thruster[J]. Journal of Rocket Propulsion, 2023,49(5):99-106.
[14]胡平信, 刘国球. 液体火箭发动机的技术发展与展望[J]. 导弹与航天运载技术, 1998(2): 1-10.
HU P X, LIU G Q. Technological development and prospect for liquid rocket engines[J]. Missiles and Space Vehicles, 1998(2):1-10.
[15]沈赤兵, 王克昌, 陈启智. 国外小推力液体火箭发动机的最新进展[J]. 上海航天, 1996, 12(3): 41-45.
SHEN C B, WANG K C, CHEN Q Z. The latest prograss in smallthrust liquid rocket engines abroad[J]. Aerospace Shanghai, 1996, 12(3): 41-45.
[16]周悦, 公绪滨, 方涛. 硝酸羟铵基无毒单组元推进剂应用探讨[J]. 导弹与航天运载技术, 2015(4): 32-35.
ZHOU Y, GONG X B, FANG T. Applicable discussion on han-based nontoxic monopropellant[J]. Missiles and Space Vehicles, 2015(4): 32-35.
[17]方涛, 贺芳, 盛云龙, 等. 硝酸羟铵基单组元推进剂研究[C]//第三届全国化学推进剂学术会议. 张家界: 中国化学会, 2007.
[18]SUTTON G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power, 2003, 19(6): 978-1007.
[19]MITTENDORF D, FACINELLI W, SARPOLUS R, et al. Experimental development of a monopropellant for space propulsion systems[C]//33rd Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1997.
[20]夏连根, 赵许群, 王晓东. 硝酸羟胺单元推进技术研究进展[C]//第四届全国化学推进剂学术交流会. 酒泉: 中国化学会, 2009.
[21]MEINHARDT D, CHRISTOFFERSON S, WUCHERER E, et al. Performance and life testing of small HAN thrusters[C]//35th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1999.
[22]WUCHERER E, CHRISTOFFERSON S, REED B. Assessment of high performance HAN-monopropellants[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2000.
[23]ZUBE D, CHRISTOFFERSON S, WUCHERER E, et al. Evaluation of HAN-based propellant blends[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2003.
[24]王宏伟, 王建伟. AF-315液体单元推进剂研究进展[J]. 化学推进剂与高分子材料, 2010, 8(5): 6-9.
WANG H W, WANG J W. Research progress on AF-315 liquid monopropellant[J]. Chemical Propellants & Polymeric Materials, 2010, 8(5): 6-9.
[25]SACKHEIM R L. Overview of United States rocket propulsion technology and associated space transportation systems[J]. Journal of Propulsion and Power, 2006, 22(6): 1310-1332.
[26]ADAM B. Reduced toxicity high performance monopropellant[Z]. 2010.
[27]NOBUHIKO T, TETSUYA M, KATSUMI F, et al. The “greening” of spacecraft reaction control systems[Z]. 2011.
[28]鲍世国, 公绪滨, 陈艺, 等. 一种HAN基单元推进剂及催化分解性能研究[J]. 火箭推进, 2018, 44(2): 39-45.
BAO S G, GONG X B, CHEN Y, et al. Investigation of a novel HAN-based monopropellant and its catalytic decomposition performance[J]. Journal of Rocket Propulsion, 2018, 44(2): 39-45.
[29]白梅杉, 戴佳, 姚天亮, 等. HAN基无毒单元发动机常温启动技术研究[J]. 宇航总体技术, 2019, 3(2): 36-43.
BAI M S, DAI J, YAO T L, et al. Research of HAN-based green monopropellant thruster start under normal temperature[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 36-43.
[30]CAVENDER D P, MARSHALL W M, MAYNARD A. NASA green propulsion roadmap[C]//2018 Joint Propulsion Conference. Reston, Virginia: AIAA, 2018.
[31]BROWN N. First successful NCADE flight trial proves key technology[Z]. 2008.
[32]MCLEAN C H. Green propellant infusion mission program overview[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[33]MCLEAN C H. Green propellant infusion mission program development and technology maturation[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2014.
[34]HARBAUGH J. NASA's green propellant infusion mission nears completion[Z]. 2020.
[35]TSAY M, FENG C, ZWAHLEN J. System-level demonstration of busek's 1U CubeSat green propulsion module “AMAC”[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2017.
[36]DAWN A, GRAYSON H. Design of a green monopropellant propulsion system for the lunar flashlight cubesat mission[C]//34th Annual Small Satellite Conference.[S. l. ]:[s. n. ], 2020.
[37]ANDREWS D, LIGHTSEY E. Design of a green monopropellant propulsion system for the lunar flashlight mission[EB/OL]. https: //www. semanticscholar. org/paper/Design-of-a-Green-Monopropellant-Propulsion-System-Andrews-Lightsey/13849f425ddb3c05e00d41decbf93fb9ba0465e0, 2019.
[38]SARAH F. NASA selects small businesses for orbital debris, surface dust tech[EB/OL]. http: //www. nasa. gov/directorates/spacetech/sbir_sttr/nasa-selects-small-businesses-for-orbital-debris-surface-dust-tech, 2023.
[39]Rubicon's ASCENT propulsion system to power NASA dual mode project[EB/OL]. https: //www. rubicon. space/news/19/rubicon-s-ascent-propulsion-system-to- power-nasa-dual-mode-project, 2024.
[40]Dual mode green monopropellant propulsion system for interplanetary missions ISBIR. gov[EB/OL]. https: //www. sbir. gov/node/2117115, 2024.
[41]CLARENCE O. Flight works creates modular propulsion system for AFRL with $5.7M contract[EB/OL]. https: //www. spacedaily. com/reports/Flight_Works_creates_modular_propulsion_system_for_AFRL_with_5_7M_contract_999. html, 2024.
[42]SHINJI I, YOSHIKI M. Development status of a hydrazine alternative and low-cost thruster using HAN/HN-based green propellant[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.[S. l. ]:[s. n. ], 2017.
[43]HIKARU U, DAIJIRO S, TSUTOMU T, et al. Green propulsion systems for satellites: development of thrusters and propulsion Systems Using Low-Toxicity Propellants[J]. Mitsubishi Heavy Industries Technical Review, 2019, 56(1): 1-7.
[44]HORI K, KATSUMI T, SAWAI S, et al. HAN-based green propellant, SHP163: its R&D and test in space[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(9): 1080-1083.
[45]黑猫武器说. 返回舱直径从4.5米升级为5米, 我国新飞船这么大?[EB/OL]. https: //mq. mbd. baidu. com/r/1dTy68DovhS?f=cp&u=fe90fab8ac9d8b36, 2023.
[46]陈兴强, 张志勇, 滕奕刚, 等. 可用于替代肼的2种绿色单组元液体推进剂HAN、ADN[J]. 化学推进剂与高分子材料, 2011, 9(4): 63-66.
CHEN X Q, ZHANG Z Y, TENG Y G, et al. Two kinds of green liquid monopropellants HAN, ADN for replacing hydrazine[J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 63-66.
[47]NAGAMACHI M Y, OLIVEIRA J I S, KAWAMOTO A M, et al. AND: the new oxidizer around the corner for an environmentally friendly smokeless propellant[J]. Journal of Aerospace Technology and Management, 2009, 1(2): 153-160.
[48]刘波, 刘少武, 于慧芳, 等. 二硝酰胺铵防吸湿技术研究进展[J]. 化学推进剂与高分子材料, 2011, 9(6): 57-60.
LIU B, LIU S W, YU H F, et al. Research progress in anti-hygroscopicity of ammonium dinitramide[J]. Chemical Propellants & Polymeric Materials, 2011, 9(6): 57-60.
[49]周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2): 87-92.
ZHOU X Y, TANG G, PANG A M. Research progress of ADN propellants abroad[J]. Aerospace Technology, 2017(2): 87-92.
[50]NEGRI M, WILHELM M, HENDRICH C, et al. New technologies for ammonium dinitramide based monopropellant thrusters: The project RHEFORM[J]. Acta Astronautica, 2018, 143: 105-117.
[51]WILHELM M, NEGRI M, CIEZKI H, et al. Preliminary tests on thermal ignition of ADN-based liquid monopropellants[J]. Acta Astronautica, 2019, 158: 388-396.
[52]陈兴强, 王学敏, 许华新, 等. ADN基液体单组元推进剂配方国外研究进展[J]. 化学推进剂与高分子材料, 2018, 16(1): 19-23.
CHEN X Q, WANG X M, XU H X, et al. Foreign research progress of ADN-based liquid monopropellant formulations[J]. Chemical Propellants & Polymeric Materials, 2018, 16(1): 19-23.
[53]WINGBORG N. Ammonium dinitramide-water: Interaction and properties[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1582-1586.
[54]ANFLO K, GRONLAND T, WINGBORG N. Development and testing of ADN-based monopropellants in small rocket engines[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2000.
[55]ANFLO K, GRONLAND T A. Towards green propulsion for spacecraft with ADN-based monopropellants[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2002.
[56]WURDAK M, STRAUSS F, WERLING L, et al. Determination of fluid properties of the green propellant FLP-106 and related material and component testing with regard to applications in space missions[EB/OL]. https: //www. semanticscholar. org/paper/Determination-of-fluid-properties-of-the-green-and-Wurdak-Strauss/c87cdcf802e1c4cb1540e8270f689f16ae243cc0, 2012.
[57]NEGRI M, GRUND L. Replacement of hydrazine overview and first results of the H2020 project rheform[C]//6th European Conference for Aeronautics and Space Sciences(EUCASS).[S. l. ]:[s. n. ], 2015.
[58]THORMAHLEN P, ANFLO K. Low-temperature operational and storable ammonium dinitramide based liquid monopropellant blends: WO2012/166046[P]. 2012-12-06.
[59]IWAIK, NOZOE K. Liquid propellant: WO2014/084344[P]. 2014-06-05.
[60]WITT W, REINELT K. Liquid propellant: US5047098[P]. 1991-09-10.
[61]TAKAHASHI T, IWAI K. Liquid propellant and production method therefor: JP2016069228[P]. 2016-05-09.
[62]松永浩貴, 塩田謙人, 伊里友一朗. イオン液体を用いた新規ロケット推進剤の研究開発[R]. JAXA-RR-16-006, 2016.
[63]IDE Y, TAKAHASHI T, IWAI K, et al. Potential of ADN-based ionic liquid propellant for spacecraft propulsion[J]. Procedia Engineering, 2015, 99: 332-337.
[64]BOHN M A, ANIOL J, PONTIUS H, et al. Thermal stability and stabilization of ADN-water gels[C]//International Annual Conference of Information and Communication Technology. [S. l. ]:[s. n. ], 2007.
[65]张万生, 王晓东, 夏连根, 等. 绿色ADN液体推进剂应用研究进展[C]//第八届全国化学推进剂学术会议. 青岛: 中国化学会, 2017.
[66]姚兆普, 张伟, 王梦, 等. ADN基液体空间发动机的实验研究与在轨验证[J]. 火箭推进, 2018, 44(1): 8-14.
YAO Z P, ZHANG W, WANG M, et al. Experimental investigation and on-orbit flying validation of an ADN-based liquid space engine[J]. Journal of Rocket Propulsion, 2018, 44(1): 8-14.
[67]ANFLO K, CROWE B. In-space demonstration of an ADN-based propulsion system[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2011.
[68]ANFLO K, PERSSON S, THORMAHLEN P, et al. Flight demonstration of an ADN-based propulsion system on the PRISMA satellite[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2006.
[69]ANFLO K, MÖLLERBERG R. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite[J]. Acta Astronautica, 2009, 65(9/10): 1238-1249.
[70]MANI K V, CERVONE A, TOPPUTO F. Combined chemical-electric propulsion for a stand-alone Mars CubeSat[J]. Journal of Spacecraft and Rockets, 2019, 56(6): 1816-1830.
[71]姚天亮, 邱鑫, 刘川, 等. “绿色”高性能HAN 基单元推力器非催化点火技术研究进展[J]. 空间推进, 2015, 1(9): 1-7.
YAO T L, QIU X, LIU C, et al. Research progress on non-catalytic ignition technology of “green” high-performance HAN-based unit thrusters[J]. Space Propulsion, 2015, 1(9): 1-7.
[72]LARSSON A, WINGBORG N, ELFSBERG M, et al. Electrical ignition of new environmental-friendly propellants for rockets and spacecrafts[C]//2005 IEEE Pulsed Power Conference. Monterey, CA: IEEE, 2005.
[73]MENG H, KHARE P, RISHA G, et al. Decomposition and ignition of HAN-based monopropellants by electrolysis[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2009.
[74]WU M H, YETTER R, YANG V. Development and characterization of ceramic micro chemical propulsion and combustion systems[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2008.
[75]余永刚, 李明, 周彦煌, 等. 液体推进剂液滴电点火特性的实验研究[J]. 含能材料, 2008, 16(5): 625-628.
YU Y G, LI M, ZHOU Y H, et al. Experimental study on electrical ignition properties of liquid propellant droplet[J]. Chinese Journal of Energetic Materials, 2008, 16(5): 625-628.
[76]THRASHER J, WILLIAMS S, TAKAHASHI P, et al. Pulsed plasma thruster development using a novel HAN-based green electric monopropellant[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016.
[77]WILHELM M, NEGRI M, CIEZKI H, et al. Preliminary tests on thermal ignition of ADN-based liquid monopropellants[J]. Acta Astronautica, 2019, 158: 388-396.
[78]NEGRI M, WILHELM M, CIEZKI H K. Thermal ignition of ADN-based propellants[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(9): 1096-1106.
[79]李雷, 李国岫, 李洪萌, 等. 不同电极材料下ADN基液体推进剂电点火特性的实验研究[J]. 推进技术, 2020, 41(1): 65-72.
LI L, LI G X, LI H M, et al. Experimental study of electrical ignition characteristics of ADN-based liquid propellants with different electrode materials[J]. Journal of Propulsion Technology, 2020, 41(1): 65-72.
[80]LI L, LI G X, LI H M, et al. Effects of ignition voltage and electrode structure on electric ignition and combustion characteristics of Ammonium Dinitramide(ADN)-based liquid propellants in electric ignition mode in inert gas environment[J]. Chinese Journal of Aeronautics, 2024, 37(4): 229-242.
[81]KAKAMI A, IDETA K, ISHIBASHI T, et al. One Newton thruster by plasma-assisted combustion of HAN-based monopropellant[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: AIAA, 2012.
[82]IIZUKA T, SHINDO T, SATO J, et al. Basic characteristics of reaction initiation system using dishcharge plasma for 1 N-class thruster with green propellants[EB/OL]. https: //www. semanticscholar. org/paper/Basic-Characteristics-of-Reaction-Initiation-System-Iizuka-Shindo/1355d6065cbc518ffc34215e6d8646888d4d8155, 2013.
[83]ALFANO A J, MILLS J D, VAGHJIANI G L. Resonant laser ignition study of HAN-HEHN propellant mixture[J]. Combustion Science and Technology, 2009, 181(6): 902-913.
[84]LANI B P. Microwave ignition of green monopropell-ants[D]. Pennsylvania: The Pennsylvania State University, 2014.
[85]MATSUNAGA H, KATOH K, HABU H, et al. Ignition of the droplets of ammonium dinitramide-based high-energy ionic liquid[J]. Transactions of the Japan Society of Aeronautical and Space Sciences, Aerospace Technology Japan, 2020, 18(6): 323-329.
[86]ITOUYAMA N, MATSUNAGA H, HABU H. Characterization of continuous-wave laser heating ignition of ammonium dinitramide-based ionic liquids with carbon fibers[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(6): 988-996.
[87]CHENG J, CAO J L, LI F W, et al. Microwave controlled ignition and combustion characteristics of ADN-based ionic liquid propellant with fast response and environmental friendliness[J]. Chemical Engineering Journal, 2023, 471: 144412.
[88]HOU Y Y, YU Y S, LI Y, et al. Experimental study on microwave ignition of ADN-based liquid propellant droplets doped with alumina nanoparticles[J]. Journal of Physics D: Applied Physics, 2024, 57(14): 145505.
[89]WHITMORE S A, MERKLEY D P, JUDSON M I, et al. Development and testing of a green monopropellant ignition system[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[90]WHITMORE S A, MERKLEY S L, SPURRIER Z S, et al. Development of a power efficient, restartable, “green” propellant thruster for small spacecraft and satellites[Z]. 2015.
[91]WHITMORE S A, MERKLEY D P, EILERS S D, et al. Hydrocarbon-seeded ignition system for small spacecraft thrusters using ionic liquid propellants[Z]. 2013.
[92]JOSHI P B, PIPER L G, OAKES D B, et al. Fast ignition and sustained combustion of ionic liquids: US20130205751[P]. 2013-08-15.