[1] 刘大响, 金捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学, 2004, 6(9): 1-8.
LIU D X, JIN J. The development trends and prospect of world aeropropulsion technology in the 21st century[J]. Strategic Study of CAE, 2004, 6(9): 1-8.
[2]符全军, 燕珂, 杜宗罡, 等. 吸热型碳氢燃料研究进展[J]. 火箭推进, 2005, 31(5): 32-36.
FU Q J, YAN K, DU Z G, et al. Research progress of endothermic hydrocarbon fuels[J]. Journal of Rocket Propulsion, 2005, 31(5): 32-36.
[3]EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[4]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[5]熊中强, 米镇涛, 张香文, 等. 合成高密度烃类燃料研究进展[J]. 化学进展, 2005, 17(2): 359-367.
XIONG Z Q, MI Z T, ZHANG X W, et al. Development of synthesized high-density hydrocarbon fuels[J]. Progress in Chemistry, 2005, 17(2): 359-367.
[6]杜宗罡, 史雪梅, 符全军. 高能液体推进剂研究现状和应用前景[J]. 火箭推进, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[7]周劲松, 冯渐超, 张志勇, 等. 环戊二烯合成巡航导弹用高密度烃燃料[J]. 化学推进剂与高分子材料, 2003, 1(2): 17-21.
ZHOU J S, FENG J C, ZHANG Z Y, et al. Synthesis of high density hydrocarbon fuel from cyclopentadiene for cruise missile[J]. Chemical Propellants & Polymeric Materials, 2003, 1(2): 17-21.
[8]焦燕, 冯利利, 朱岳麟, 等. 美国军用喷气燃料发展综述[J]. 火箭推进, 2008, 34(1): 30-35.
JIAO Y, FENG L L, ZHU Y L, et al. Review of American military jet fuels development[J]. Journal of Rocket Propulsion, 2008, 34(1): 30-35.
[9]邢燕, 方文军, 谢文杰, 等. 吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定[J]. 化学学报, 2008, 66(20): 2243-2247.
XING Y, FANG W J, XIE W J, et al. Thermal cracking and heat sink measurement of model compounds of endothermic hydrocarbon fuels under supercritical conditions[J]. Acta Chimica Sinica, 2008, 66(20): 2243-2247.
[10]VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
[11]CHENOWETH K, VAN DUIN A C T, DASGUPTA S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746.
[12]HAN S, LI X X, ZHENG M, et al. Initial reactivity differences between a 3-component surrogate model and a 24-component model for RP-1 fuel pyrolysis evaluated by ReaxFF MD[J]. Fuel, 2018, 222: 753-765.
[13]ZHAO P, HAN S, LI X X, et al. Comparison of RP-3 pyrolysis reactions between surrogates and 45-component model by ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2019, 33(8): 7176-7187.
[14]ASHRAF C, SHABNAM S, JAIN A, et al. Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study[J]. Fuel, 2019, 235: 194-207.
[15]LELE A, KWON H, GANESHAN K, et al. ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel[J]. Fuel, 2021, 297: 120724.
[16]KWON H, LELE A, ZHU J Q, et al. ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels[J]. Fuel, 2020, 279: 118548.
[17]ZHENG M, LI X X, GUO L. Algorithms of GPU-enabled reactive force field(ReaxFF)molecular dynamics[J]. Journal of Molecular Graphics and Modelling, 2013, 41: 1-11.
[18]LIU J, LI X X, GUO L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J]. Journal of Molecular Graphics and Modelling, 2014, 53: 13-22.
[19]LI X X, ZHENG M, REN C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739.
[20]LIU H, LIANG J H, HE R N, et al. Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation[J]. Combustion and Flame, 2022, 237: 111865.
[21]SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions[J]. NPJ Computational Mathematics, 2016, 2: 15011.
[22]MAO Q, FENG M Y, JIANG X Z, et al. Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems[J]. Progress in Energy and Combustion Science, 2023, 97: 101084.
[23]QIN X M, XIE H J, YUE L, et al. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10[J]. Journal of Molecular Modeling, 2014, 20(4): 2183.
[24]ZEHE M J, JAFFE R L. Theoretical calculation of jet fuel thermochemistry. 1. tetrahydrodicylopentadiene(JP10)thermochemistry using the CBS-QB3 and G3(MP2)//B3LYP methods[J]. The Journal of Organic Chemistry, 2010, 75(13): 4387-4391.
[25]CHENOWETH K, VAN DUIN A C T, GODDARD W. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053.
[26]LI S, VARATHARAJAN B, WILLIAMS F. Chemistry of JP-10 ignition[J]. AIAA Journal, 2001, 39: 2351-2356.
[27]GAO C W, VANDEPUTTE A G, YEE N W, et al. JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation[J]. Combustion and Flame, 2015, 162(8): 3115-3129.
[28]ZHONG B J, ZENG Z M, ZHANG H Z. An experimental and kinetic modeling study of JP-10 combustion[J]. Fuel, 2022, 312: 122900.
[29]JIANG H P, SHEN W, BAI S J, et al. Revised HyChem modeling combustion chemistry of air-breathing high-energy density jet fuel: JP-10[J]. Combustion and Flame, 2023, 248: 112578.
[30]WANG H, XU R, WANG K, et al. A physics-based approach to modeling real-fuel combustion chemistry-I. evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[J]. Combustion and Flame, 2018, 193: 502-519.