|Table of Contents|

Electric ignition and stable combustion of hydroxylamine nitrate-based liquid propellant for different components(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
96-105
Research Field:
目次
Publishing date:

Info

Title:
Electric ignition and stable combustion of hydroxylamine nitrate-based liquid propellant for different components
Author(s):
JIN Baozhi12SHEN Lianhua3LI Guoxiu12LI Hongmeng12BAO Shiguo3
1.School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China; 2.Beijing Key Laboratory of New Energy Vehicle Powertrain Technology,Beijing Jiaotong University, Beijing 100044, China; 3.Beijing Key Laboratory of Research and Application for Aerospace Green Propellants,Beijing Institute of Aerospace Testing Technology,Beijing 100074,China
Keywords:
space engine hydroxylamine nitrate based liquid propellant electric ignition methanol acetonitrile
PACS:
V511
DOI:
10.3969/j.issn.1672-9374.2024.05.009
Abstract:
To avoid the shortcomings of long delay time and catalyst deactivation of traditional catalytic ignition for hydroxylamine nitrate(HAN)-based liquid propellant, and give full play to the advantages of high energy density and high specific impulse of HAN-based liquid propellant. The experimental systems of electric ignition for static and flowing state of HAN-based liquid propellants were designed and constructed. Four new kinds of high-energy HAN-based liquid propellants were prepared. The electric ignition and stable combustion experiments of propellants for static and flow state were studied. The effects of different components on the ignition and stable combustion of HAN-based liquid propellants were compared. The addition of methanol inhibited the activity of the propellant. Meanwhile, the decomposition process of the propellant became slow and no stable combustion flame was observed. The propellant mixed with 15% acetonitrile showed excellent performance in flame height and ignition delay time, and it could maintain the flame combustion by self-decomposition after closing the voltage for the flow state.

References:

[1] 陈锐达, 徐辉, 陈泓宇, 等. 1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J]. 火箭推进, 2023, 49(4): 17-25.
CHEN R D, XU H, CHEN H Y, et al. Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J]. Journal of Rocket Propulsion, 2023, 49(4): 17-25.
[2]王通, 刘上, 姜垒, 等. 开式循环液氧煤油发动机推力调节特性分析[J]. 火箭推进, 2023, 49(2): 57-65.
WANG T, LIU S, JIANG L, et al. Investigation of thrust adjustment characteristics of open-cycle LOX/kerosene engine[J]. Journal of Rocket Propulsion, 2023, 49(2): 57-65.
[3]MAYER A, WIELING W. Green propulsion research at TNO the Netherlands[J]. Transactions on Aerospace Research, 2018(4): 1-24.
[4]白梅杉, 於希乔, 陆文杰, 等. 硝酸羟胺发动机喷注器特种流量分配方法[J]. 火箭推进, 2023, 49(5): 99-106.
BAI M S, YU X Q, LU W J, et al. Injector flow distribution method of a hydroxylamine nitrate thruster[J]. Journal of Rocket Propulsion, 2023, 49(5): 99-106.
[5]CHAI W S, CHEAH K H, WU M H, et al. A review on hydroxylammonium nitrate(HAN)decomposition techniques for propulsion application[J]. Acta Astronautica, 2022, 196: 194-214.
[6]王新强, 邓康清, 李洪旭, 等. HAN基绿色推进剂点火技术研究进展[J]. 火箭推进, 2017, 43(2): 72-76.
WANG X Q, DENG K Q, LI H X, et al. Research progress on ignition of HAN-based green propellant[J]. Journal of Rocket Propulsion, 2017, 43(2): 72-76.
[7]方杰, 王尊, 严浩, 等. 双模式离子液体推进剂真空条件催化点火特性[J]. 火箭推进, 2022, 48(5): 1-8.
FANG J, WANG Z, YAN H, et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[8]鲍世国, 公绪滨, 陈艺, 等. 一种HAN基单元推进剂及催化分解性能研究[J]. 火箭推进, 2018, 44(2): 39-45.
BAO S G, GONG X B, CHEN Y, et al. Investigation of a novel HAN-based monopropellant and its catalytic decomposition performance[J]. Journal of Rocket Propulsion, 2018, 44(2): 39-45.
[9]AMARIEI D, COURTHÉOUX L, ROSSIGNOL S, et al. Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor Comparison of powder and sphere-shaped catalysts[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(2): 165-174.
[10]AMROUSSE R, HORI K, FETIMI W, et al. HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes[J]. Applied Catalysis B: Environmental, 2012, 127: 121-128.
[11]鲍立荣, 汪辉, 陈永义, 等. 硝酸羟胺基绿色推进剂研究进展[J]. 含能材料, 2020, 28(12): 1200-1210.
BAO L R, WANG H, CHEN Y Y, et al. Review on hydroxylammonium nitrate based green propellant[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1200-1210.
[12]BAO L R, WANG H, WANG Z W, et al. Controllable ignition, combustion and extinguishment characteristics of HAN-based solid propellant stimulated by electric energy[J]. Combustion and Flame, 2022, 236: 111804.
[13]BAO L R, ZHANG W, ZHANG X J, et al. Impact of MWCNT/Al on the combustion behavior of hydroxyl ammonium nitrate(HAN)-based electrically controlled solid propellant[J]. Combustion and Flame, 2020, 218: 218-228.
[14]YETTER R, YANG V, WANG Z, et al. Development of meso and micro scale liquid propellant thrusters[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2003.
[15]MENG H, KHARE P, RISHA G, et al. Decomposition and ignition of HAN-based monopropellants by electrolysis[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2009.
[16]CHAI W S, CHIN J, CHEAH K H, et al. Calorimetric study on electrolytic decomposition of hydroxylammonium nitrate(HAN)ternary mixtures[J]. Acta Astronautica, 2019, 162: 66-71.
[17]CHAI W S, SUN D S, CHEAH K H, et al. Co-electrolysis-assisted decomposition of hydroxylammonium nitrate-fuel mixtures using stainless steel-platinum electrodes[J]. ACS Omega, 2020, 5(31): 19525-19532.
[18]CHAI W S, CHEAH K H, MENG H, et al. Experimental and analytical study on electrolytic decomposition of HAN-water solution using graphite electrodes[J]. Journal of Molecular Liquids, 2019, 293: 111496.
[19]CHAI W S,KOH K S,CHEAH K H,et al. Performance comparison between single and multi-electrode system for electrolytic decomposition of HAN[C]//30th International Symposium on Space Technology and Science.Kobe,Japan:[s.n.],2015.
[20]WAHIDA T F. Electrolytic decomposition of hydroxylammonium nitrate(HAN)mixtures in micropropulsion[EB/OL]. https://www.semanticscholar.org/paper/Electrolytic-Decomposition-of-Hydroxylammonium-in-Wahida/9e01d3f0be50c53333b8988ca860110ac24c5075, 2014.
[21]KHARE P, YANG V, MENG H, et al. Thermal and electrolytic decomposition and ignition of HAN-water solutions[J]. Combustion Science and Technology, 2015, 187(7): 1065-1078.
[22]余永刚, 李明, 周彦煌, 等. 液体推进剂液滴电点火特性的实验研究[J]. 含能材料, 2008, 16(5): 625-628.
YU Y G, LI M, ZHOU Y H, et al. Experimental study on electrical ignition properties of liquid propellant droplet[J]. Chinese Journal of Energetic Materials, 2008, 16(5): 625-628.
[23]刘焜, 余永刚, 倪彬. HAN基液体推进剂单滴无弧点火过程的数值模拟[J]. 含能材料, 2014, 22(2): 155-160.
LIU K, YU Y G, NI B. Numerical simulation for arcless electrical ignition process of single droplet of HAN-based liquid propellant[J]. Chinese Journal of Energetic Materials, 2014, 22(2): 155-160.
[24]余永刚, 金志明. 单元推进剂液滴在高温高压下的微爆现象观测[J]. 高压物理学报, 2000, 14(4): 302-308.
YU Y G, JIN Z M. Monopropellant droplet microexplosions under high pressure and temperature[J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 302-308.
[25]WU M H, YETTER R, YANG V. Development and characterization of ceramic micro chemical propulsion and combustion systems[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2008.
[26]鄢浩, 王文敏, 川合章子, 等. 加压CO2/乙腈/TBAPF6混合物的导电率分析[J]. 上海大学学报(自然科学版), 2013, 19(4): 340-344.
YAN H, WANG W M, CHUAN H Z Z, et al. Electrical conductivity of pressure elevated pressure CO2/CH3CN/TBAPF6 mixture[J]. Journal of Shanghai University(Natural Science Edition), 2013, 19(4): 340-344.
[27]肖虹, 房喜荣, 李悦, 等. 常规推进剂发动机高压富氧燃气燃烧处理方法与试验[J]. 火箭推进, 2023, 49(1): 87-92.
XIAO H, FANG X R, LI Y, et al. Combustion treatment method and test of high pressure oxidizer-rich gas of conventional propellant LRE[J]. Journal of Rocket Propulsion, 2023, 49(1): 87-92.

Memo

Memo:
-
Last Update: 1900-01-01