|Table of Contents|

Analysis on compatibility for three kinds of adhesives with aerospace kerosene(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
122-129
Research Field:
目次
Publishing date:

Info

Title:
Analysis on compatibility for three kinds of adhesives with aerospace kerosene
Author(s):
YU JunFENG XianHAN WeiDU ZonggangYANG ChaoGAO Lichuan
Xi'an Aerospace Propulsion Test Technique Institute, Xi'an 710100, China
Keywords:
compatibility adhesive coal-based aerospace kerosene petroleum-based aerospace kerosene polymethacrylimide
PACS:
TQ437
DOI:
10.3969/j.issn.1672-9374.2024.05.012
Abstract:
To meet the compatibility requirements of materials used in liquid oxygen/kerosene rocket engines, a comparative experimental study was conducted by the soaking method on the compatibility of aluminum alloy 2219/polymethacrylimide(PMI)bonding specimens and PMI/PMI bonding specimens with petroleum based and coal based aerospace kerosene, respectively, which are composed of three adhesives(DW-1 low-temperature adhesive, DW-3 low-temperature adhesive, J-249 adhesive). The obtained bonding specimens were soaked in two types of aerospace kerosene at -60-50 ℃, and the tensile performance on the soaked bonding specimens were tested. The results show that the three adhesives can still effectively bond the bonding specimens after being soaked in two types of aerospace kerosene within the temperature range of -60-50 ℃, and the DW-1 and DW-3 adhesives perform better in low temperature environment. The high temperature environment will weaken the interface between DW-1 adhesive and alloy 2219, while J-249 adhesive and coal-based aerospace kerosene show better adaptability.

References:

[1] EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[2]马瀚英. 航天煤油[M]. 北京: 中国宇航出版社, 2003: 1-7.
[3]王镜淇,王成刚,陈雪娇,等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进,2022,48(6):101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[4]韩伟, 杨超, 兰海平, 等. 煤基与石油基航天煤油掺混理化性能[J]. 火箭推进, 2019, 45(2): 60-65.
HAN W, YANG C, LAN H P, et al. Physical and chemical properties of blended fuel of coal-based and petroleum-based space kerosene[J]. Journal of Rocket Propulsion, 2019, 45(2): 60-65.
[5]余锋, 李娟娟, 岳兵, 等. 材料与航天煤油相容性试验研究[J]. 航天制造技术, 2013(3): 17-21.
YU F, LI J J, YUE B, et al. Experimental study on the compatibility of material with kerosene[J]. Aerospace Manufacturing Technology, 2013(3): 17-21.
[6] 杜宗罡,史雪梅,单世群,等. 减阻航天煤油减阻机理与传热规律数值模拟[J]. 火箭推进,2022,48(1):76-82.
DU Z G, SHI X M, SHAN S Q, et al. Numerical study on flow drag reduction mechanism and heat transfer process of polymer drag reducing rocket kerosene[J]. Journal of Rocket Propulsion, 2022,48(1):76-82.
[7]赵云峰. 航天特种高分子材料研究与应用进展[J]. 中国材料进展, 2013, 32(4): 217-228.
ZHAO Y F. Progress on research and application of special polymer materials in aerospace industry[J]. Materials China, 2013, 32(4): 217-228.
[8]赵飞明, 赵云峰, 陈江涛. 航天胶粘剂的性能与应用[J]. 粘接, 2014, 35(12): 42-45.
ZHAO F M, ZHAO Y F, CHEN J T. Performance and application of aerospace adhesives[J]. Adhesion, 2014, 35(12): 42-45.
[9]王彬, 杨瑞生, 郑卫东, 等. 运载火箭共底贮箱加注过程非稳态温度分布数值模拟[J]. 化工学报, 2020, 71(Sup.1): 68-76.
WANG B, YANG R S, ZHENG W D, et al. Numerical simulations on unsteady temperature distribution of sandwich bulkhead tank in launch vehicle[J]. CIESC Journal, 2020, 71(Sup.1): 68-76.
[10]李茂, 韩涵, 唐杰, 等. 大温差隔热共底在运载贮箱中的应用研究[J]. 上海航天, 2016, 33(Sup.1): 43-49.
LI M, HAN H, TANG J, et al. Application of PMI foam cored sandwich bulkhead tank in launch vehicle[J]. Aerospace Shanghai(Chinese & English), 2016, 33(Sup.1): 43-49.
[11]李照谦, 南博华, 何腾锋, 等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺, 2016, 46(4): 68-72.
LI Z Q, NAN B H, HE T F, et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle[J]. Aerospace Materials & Technology, 2016, 46(4): 68-72.
[12]郭平军, 梁国正, 张增平. 胶粘剂在航天工业中的应用[J]. 中国胶粘剂, 2009, 18(3): 56-60.
GUO P J, LIANG G Z, ZHANG Z P. Application of adhesives in aerospace industry[J]. China Adhesives, 2009, 18(3): 56-60.
[13]唐梅, 孙丽荣, 常青, 等. 胶粘剂在航天领域的应用[J]. 化学与粘合, 2002, 24(4): 171-172.
TANG M, SUN L R, CHANG Q, et al. Organic adhesives applied in aerospace industry[J]. Chemistry and Adhesion, 2002, 24(4): 171-172.
[14]李协平, 王洪奎. 超低温胶粘剂及其在航天运载器上的应用[J]. 粘接, 1989, 16(2): 1-6.
LI X P,WANG H K. The cryogenic adhesives and their applications in rocket and spacecraft[J]. Adhesion in China, 1989, 16(2): 1-6.
[15]张建峰. 碳纤维增强树脂基复合材料低温液氧相容性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
ZHANG J F. Study on compatibility of carbon fiber reinforced resin matrix composites with liquid oxygen at low temperature[D]. Harbin: Harbin Institute of Technology, 2010.
[16]王戈, 刘长军, 李效东, 等. 聚合物基复合材料在液氧贮箱中的应用研究[J]. 宇航材料工艺, 2004, 34(1): 16-22.
WANG G, LIU C J, LI X D, et al. Study on application of polymer composites in liquid oxygen tank[J]. Aerospace Materials & Technology, 2004, 34(1): 16-22.
[17]CHAMBERLAIN D L, IRWIN K C, KIRSHEN N A, et al. Investigation of reactivity of launch vehicle materials with liquid oxygen[Z]. 1968.
[18]SPIES O R. Initiation and growth of explosions in liquids and solids[J]. Journal of the Franklin Institute, 1953, 255(2): 155-156.
[19]ASTM复合材料委员会.夹层结构平面拉伸强度标准试验方法:ASTM C 297[S]. 华盛顿:美国国防部, 2015.
[20]吴金林. 低温导热绝缘胶粘剂研究[J]. 低温工程, 1998(3): 51-54.
WU J L. Study of the adhesive of low temperature heat conduction and insulation[J]. Cryogenics, 1998(3): 51-54.
[21]孙培杰, 李鹏, 张振涛, 等. 新一代运载火箭共底贮箱隔热性能试验及环境预示[J]. 上海航天, 2014, 31(5): 54-59.
SUN P J,LI P,ZHANG Z T, et al. Experimental and numerical investigation of heat insulation performances of coplanar tanks in new generation launch vehicle[J]. Aerospace Shanghai, 2014, 31(5): 54-59.
[22]杨俊峰. 电子万能试验机的设计研究与应用[D]. 杭州: 浙江大学, 2021.
YANG J F. Design, research and application of electronic universal testing machine[D]. Hangzhou: Zhejiang University, 2021.
[23]朱鸿梅. 玻璃钢低温粘接性能的研究[D]. 上海: 上海交通大学, 2007.
ZHU H M. Study on low temperature bonding properties of FRP[D]. Shanghai: Shanghai Jiao Tong University, 2007.

Memo

Memo:
-
Last Update: 1900-01-01