|Table of Contents|

Study on explosion risk of typical high-concentration hydrogen peroxide under shock wave and thermal stimulation(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
130-137
Research Field:
目次
Publishing date:

Info

Title:
Study on explosion risk of typical high-concentration hydrogen peroxide under shock wave and thermal stimulation
Author(s):
WANG Junhong1XU Feiyang1LUO Yimin1MA Zhiyong1WU Xingliang1XU Sen12
1.School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology,Nanjing 210094, China; 2.China National Quality Supervision Testing Center for Industrial Explosive Materials,Nanjing 210094, China
Keywords:
hydrogen peroxide explosion risk UN gap test Koenen test sympathetic detonation test
PACS:
TJ04; O69
DOI:
10.3969/j.issn.1672-9374.2024.05.013
Abstract:
To investigate the explosion risk of propellant-grade hydrogen peroxide and how various concentrations affect this hazard, hydrogen peroxide samples with mass concentrations of 91%, 95%, and 98% respond to shock wave and thermal stimulation under high containment were tested using UN gap, koenen, and sympathetic detonation tests. The results show that under a strong shock wave impact of about 20 GPa, the perforation diameters in the verification plates are 68 mm, 74 mm and 76 mm for hydrogen peroxide concentrations of 91%, 95% and 98% respectively. All tested hydrogen peroxide concentrations exhibit overall explosive hazards, and the higher the concentration, the stronger the ability to propagation detonation. At a weaker shock wave stimulation(around 2 GPa), none of the hydrogen peroxide concentrations caused perforation in the verification plates, suggesting that initiation capacity is critical to the compound's explosivity. During the Koenen test, an increase in the critical explosion diameter, which was measured at 1.0 mm, 2.0 mm and 2.5 mm, respectively, corresponding to the hydrogen peroxide concentrations rising from 91% to 95%, and finally to 98% was observed. Consistent findings across both tests underscore the significant explosion risk associated with high-concentration hydrogen peroxide. The sympathetic detonation test reveals that with increasing detonation wave intensity, the reactivity of the 98% hydrogen peroxide sample heightens despite a negative outcome.

References:

[1] 贺芳, 方涛, 李亚裕, 等. 新型绿色液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[2]单继宏, 王晓东, 张涛. 常温绿色过氧化氢动力技术现状及发展趋势[J]. 水下无人系统学报, 2021, 29(6): 667-673.
SHAN J H, WANG X D, ZHANG T. Current state and development trend of non-cryogenic green hydrogen peroxide power technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 667-673.
[3]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[4]李越, 刘龙, 贾永高, 等. 基于H2O2的自燃离子液体研究进展[J]. 化学研究, 2023, 34(1): 1-13.
LI Y, LIU L, JIA Y G, et al. Research progress of hypergolic ionic liquids based on hydrogen peroxide[J]. Chemical Research, 2023, 34(1): 1-13.
[5]李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011.
LI Y Y.Liquid propellant[M]. Beijing: China Aerospace Press, 2011.
[6]CONNELL T L Jr, RISHA G A, YETTER R A, et al. Investigation of gel hydrocarbon fuels and hydrogen peroxide as a hypergolic bipropellant[J]. International Journal of Energetic Materials and Chemical Propulsion, 2018, 17(1): 57-73.
[7]王贵领, 兰剑, 曹殿学, 等. 直接NaBH4/H2O2燃料电池的研究进展[J]. 化工学报, 2008, 59(4): 805-813.
WANG G L, LAN J, CAO D X, et al. Recent advance in research on direct NaBH4/H2O2 fuel cells[J]. Journal of Chemical Industry and Engineering, 2008, 59(4): 805-813.
[8]喻健良, 王培昕, 闫兴清, 等. 双氧水分解反应放热失控特性及失控判据[J]. 化学工程, 2014, 42(6): 54-57.
YU J L, WANG P X, YAN X Q, et al. Characteristics and criterion of hydrogen peroxide decomposition runaway reaction[J]. Chemical Engineering, 2014, 42(6): 54-57.
[9]李祥茜, 李翠清, 王如君, 等. 30%双氧水的热稳定性分析[J]. 化学与粘合, 2019, 41(4): 240-243.
LI X X, LI C Q, WANG R J, et al. Analysis of thermal stability of 30% hydrogen peroxide[J]. Chemistry and Adhesion, 2019, 41(4): 240-243.
[10]UN.Recommendations on the transport of dangerous goods, manual tests and criteria[S].New York:United Nations Publication,2019.
[11]李志红. 过氧化氢生产工艺危险性分析及防控措施研究[J]. 石油化工安全环保技术, 2021, 37(4): 40-44.
LI Z H. Hazard analysis of hydrogen peroxide production process and research on prevention and control measures[J]. Petrochemical Safety and Environmental Protection Technology, 2021, 37(4): 40-44.
[12]刘嚆, 薛飞飞. 过氧化氢储存系统的设计要点[J]. 中华纸业, 2022, 43(6): 24-27.
LIU H, XUE F F. Key points in design for hydrogen peroxide storage system[J]. China Pulp & Paper Industry, 2022, 43(6): 24-27.
[13]吴洪达, 黄映恒. 过氧化氢的分解反应[J]. 河池师专学报(自然科学版), 2002, 22(2): 27-30.
WU H D, HUANG Y H. The research progress in the studies of the hydrogen peroxide decomposition[J]. Journal of Hechi Normal College, 2002, 22(2): 27-30.
[14]PATERNINA E, ARIAS J M, BARRAGÁN D. Estudio cinético de la descomposición catalizada de peróxido de hidrógeno sobre carbón activado[J]. Química Nova, 2009, 32(4): 934-938.
[15]CHEN K Y, LIN C M, SHU C M, et al. Anevaluation on thermokinetic parameters for hydrogen peroxide at various concentrationsby DSC[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85(1): 87-89.
[16]POURPOINT T L, ANDERSON W E. Hypergolic reaction mechanisms of catalytically promoted fuels with rocket grade hydrogen peroxide[J]. Combustion Science and Technology, 2007, 179(10): 2107-2133.
[17]杨伯涵, 袁华, 张运刚, 等. 自由基含量对H2O2复合固体推进剂贮存稳定性的影响[J]. 固体火箭技术, 2018, 41(2): 209-213.
YANG B H, YUAN H, ZHANG Y G, et al. Effection of radical concentration on the storage prperty of hydrogen peroxide solid propellant[J]. Journal of Solid Rocket Technology, 2018, 41(2): 209-213.
[18]RANG S, JEONG J, KHANDU BHOSALE V, et al. Reactivity of hypergolic hybrid solid fuel with industrial grade hydrogen peroxide[J]. Fuel, 2022, 330: 125543.
[19]ZHANG D W, YU D H, YUAN Y M, et al. Hypergolic ignition induced by head-on collision of bi-propellant droplets: Monoethanolamine-based fuel and hydrogen peroxide[J]. Fuel, 2023, 342: 127788.
[20]张全, 张宏哲, 徐森, 等. 硝酸铵溶液的爆炸危险性及储运安全条件研究[J]. 爆破器材, 2023, 52(3): 10-15.
ZHANG Q, ZHANG H Z, XU S, et al. Study on explosion risk and safety conditions of storage and transportation of ammonium nitrate solution[J]. Explosive Materials, 2023, 52(3): 10-15.
[21]徐飞扬, 姚亚东, 吴星亮, 等. 制式包装设计压力对无水肼液体推进剂危险等级分类影响试验[J]. 含能材料, 2022, 30(11): 1099-1105.
XU F Y, YAO Y D, WU X L, et al. Experimental study on the influence of standard packaging design pressure on the hazard classification of anhydrous hydrazine liquid propellant[J]. Chinese Journal of Energetic Materials, 2022, 30(11): 1099-1105.
[22]TAN L, LIU D B, WU Q J, et al. Effect of potassium chloride on the detonation performance and thermal stability of ammonium nitrate[J]. Journal of Energetic Materials, 2017, 25(6): 520-528.
[23]李兴隆, 吴奎先, 路中华, 等. 叠层复合装药殉爆安全性试验及数值模拟[J]. 含能材料, 2022, 30(3): 204-213.
LI X L, WU K X, LU Z H, et al. Sympathetic detonation test and simulation of laminated composite charge[J]. Chinese Journal of Energetic Materials, 2022, 30(3): 204-213.
[24]徐森. 爆炸品危险性分级程序改进及典型试验方法研究[D]. 南京: 南京理工大学, 2011.
XU S. Study on improvement of explosive hazard classification procedure and typical test method[D]. Nanjing: Nanjing University of Science and Technology, 2011.
[25]GONZÁLEZ L, OTILIA M, YÁÑEZ M. High-levelab initio versus DFT calculations on(H2O2)2 and H2O2-H2O complexes as prototypes of multiple hydrogen bond systems[J]. Journal of Computational Chemistry, 1997, 18(9): 1124-1135.
[26]GIGUÈRE P A, MAASS O. Vapour pressures and boiling points of binary mixtures of hydrogen peroxide and water[J]. Canadian Journal of Research, 1940, 18(7): 181-193.
[27]SCATCHARD G, KAVANAGH G M, TICKNOR L B. Vapor-liquid equilibrium. VIII. hydrogen peroxide—water Mixtures1[J]. Journal of the American Chemical Society, 1952, 74(15): 3715-3720.
[28]王犇, 马翔, 张淑娟, 等. 过氧化氢危险性分析[J]. 无机盐工业, 2013, 45(3): 15-18.
WANG B, MA X, ZHANG S J, et al. Analysis on thermal risk of hydrogen peroxide[J]. Inorganic Chemicals Industry, 2013, 45(3): 15-18.
[29]朱红兵, 卢文波, 吴亮. 空气间隔装药爆破机理研究[J]. 岩土力学, 2007, 28(5): 986-990.
ZHU H B, LU W B, WU L. Research on mechanism of air-decking technique in bench blasting[J]. Rock and Soil Mechanics, 2007, 28(5): 986-990.
[30]郭洪卫, 张浩宇, 李晓刚, 等. 一种反射增强型起爆结构的数值模拟研究[J]. 火工品, 2021(5): 19-23.
GUO H W, ZHANG H Y, LI X G, et al. Numerical study of a reflection-enhanced initiation structure[J]. Initiators & Pyrotechnics, 2021(5): 19-23.

Memo

Memo:
-
Last Update: 1900-01-01