|Table of Contents|

Preliminary design for composite thrust frame of liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年03期
Page:
35-41
Research Field:
研究与设计
Publishing date:

Info

Title:
Preliminary design for composite thrust frame of liquid rocket engine
Author(s):
MU Penggang LI Binchao DU Dahua DENG Changhua
National Key Laboratory of Science and Technology on Liquid Rocket Engines, Xi’an 710100, China
Keywords:
liquid-propellant rocket engine composite thrust frame design scheme
PACS:
V252-34
DOI:
-
Abstract:
Preliminary design and applied exploration of the composite thrust frame of a liquid-propellant rocket engine are performed in this paper. Based on the design features for original thrust frame metal structure, a design scheme of the carbon fiber reinforced composite thrust frame is proposed, its mechanics performance is predicted, and the effect factors on its design parameters are analyzed. APDL (ANSYS Parametric Design Language) of the finite element software ANSYS is used to develop the computing procedure of the composite thrust frame, which is based on damage accumulation theory, including stress analysis, failure evaluation and material property degradation. The internal structure injure in the loading process and the whole process of the injury accumulation until damage was simulated. The simulation analysis result shows that the composite can meet the design requirement of thrust frame strength, stiffness and stability, and the weight is decrease by 50%, compared with the original structure.

References:

[1]EHRLICH CarlF, Jr. Why the X-33 venture star gave SSTO a bad name[C]// Proceedings of AIAA SPACE Conference and Exposition. Pasadena, CA: AIAA, 2009: 111-118.
[2]LETCHWORTH Gary. X-33 reusable launch vehicle de- monstrator, spaceport and range[C]//Proceedings of AIAA SPACE Conference and Exposition. Long Beach, CA: AIAA, 2011: 11-19.
[3]SMITH John J. Evolved composite structures for Atlas V [C]//Proceedings of The 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Indianapolis, IN: AIAA, 2002: 23-28.
[4]朱宁昌. 液体火箭发动机设计(上)[M]. 北京: 宇航出版社, 1994.
[5]陈朝辉, 肖加余, 曾竟成. 复合材料在航天主承力结构及热结构上的应用[C]//. 全国首届青年复合材料学术交流会论文集, 北京: 中国复合材料学会, 2006.
[6]彭超义. 空间运载器推力支架用复合材料管件轴压性能研究[D]. 长沙: 国防科技大学, 2006.
[7]何昆, 耿东兵, 赵伟栋, 等. 树脂基复合材料发动机机架结构研究[J]. 试验技术与试验机, 2008 (2): 10-12.
[8]马海全, 李竞蔚. 复合材料桁架式发动机支架改型设计分析[J]. 强度与环境, 2006, 33(4): 39-43.
[9]蔡国飙, 李家文, 田爱梅, 等. 液体火箭发动机设计[M]. 北京: 北京航空航天出版社, 2011.
[10]中国航空研究院 编. 复合材料结构设计手册[M]. 北京: 航空工业出版社, 2001.
[11]TESERPES K I, LABEAS G, PAPANIKOS P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites: Part B, 2000 (33): 521-529.
[12]CAMANHO P P, DAVILA C G, AMBUR D R. Numerical simulation of delamination growth in composite materials: NASA/TP-2001-211041[R]. USA:NASA, 2001.
[13]CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composites[J]. Journal of composite materials, 1999 (33): 2248-2280.
[14]杨博, 陈永清, 曹正华. 大厚度碳纤维复合材料层压板的试制[J]. 航空制造技术, 2009(增刊), 73-74, 78.

Memo

Memo:
-
Last Update: 1900-01-01