|Table of Contents|

Design and application of multi-dimensional virtual vibration testing system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2013年04期
Page:
85-91
Research Field:
测控与试验
Publishing date:

Info

Title:
Design and application of multi-dimensional virtual vibration testing system
Author(s):
ZHOU Cheng 1 LI Jia-wen 2 LI Yong 1 TANG Fei 1
1. Beijing Institute of Control Engineering, Beijing 100190, China; 2. School of Astronautics, Beihang University, Beijing 100191, China
Keywords:
multi-dimensional virtual vibration structural dynamics electro-mechanical coupling closed-loop control system electromagnetic vibration shaker
PACS:
V434-34
DOI:
-
Abstract:
The virtual vibration test can be used in the product design stage to perform the structural dynamics analysis and vibration environment assessment for products, shorten the product development time, and save the development cost. The vibration shaker electro-mechanical coupling modeling, rigid modeling, finite element modeling of test specimen and closed-loop control system design were fulfilled. The three-dimensional virtual vibration test system was established. The three-dimensional and one-dimensional virtual sine sweep vibration testing for the product is discussed separately. The simulation results show that the frequency characteristics of the shaker's electro-mechanical coupling model are close to the test results, the shock excitation direction has a significant effect to the acceleration response of the product, the multi-dimensional virtual vibration test can not only significantly improve the excitation efficiency of the structural faults, but also can inspire the high-order local modal, which can significantly increase its maximum dynamic stress amplitude in the high frequency band.

References:

[1]TALEGHANI B K. Finite-element vibration analysis and modal testing of graphite epoxy tubes and correlation between the data[R]. USA: NASA, 1996.
[2]张殿军. 多维振动试验技术及应用[J]. 战术导弹技术, 2008(2): 34-37.
[3]KLENKE S. Modal test optimization using VETO (virtual environment for test optimization), SAND95-2591 [R]. USA: Sandia, 1995.
[4]邱吉宝, 王建民. 航天器虚拟动态试验技术研究及展望[J]. 航天器环境工程, 2007, 24(1): 1-14.
[5]向树红, 晏廷飞, 邱吉宝, 等. 40吨振动台虚拟试验仿真技术研究[J]. 宇航学报, 2004, 25(4): 375-381.
[6]刘闯, 向树红, 冯咬齐. 卫星虚拟振动试验系统研究[J]. 航天器环境工程, 2009, 19(3): 248-252.
[7]侯瑞, 陈国平. 振动台虚拟试验的建模和仿真研究[J]. 力学季刊, 2008, 29(2): 254-258.
[8]谭永华, 蔡国飙. 振动台虚拟试验仿真技术研究[J]. 机械强度, 2010, 32(1):030-034.
[9]RICCI S, PEETERS B, DEBILLE J, et al. Virtual shaker testing: A novel approach for improving vibration test performance[C]// International Conference on Noise and Vibration Engineering. Leuven: Katholieke University Leuven, 2008: 1767-1782.
[10]BETTS J F, VANSANT K, PAULSON C, et al. Smart testing using virtual vibration testing[C]// Proceedings of the 24th Aerospace Testing Seminar(ATS). Manhattan Beach, USA: ATS, 2008: 103-111.
[11] 王枫, 李龙飞, 杨伟东. 凝胶推进剂流动雾化特性实验系统的改进及应用[J]. 实验技术与管理, 2012 (1): 62-65.
[12] 褚宝鑫, 须村, 张晓娜, 等. 诱导轮空化对流固耦合应力分析的影响[J]. 火箭推进, 2012, 38(2): 44-48.
[13] 张建华, 谢侃. 流体喉部喷管二次流矢量控制方案[J]. 北京航空航天大学学报, 2012, 38(3): 309-313,318
[14] 邵松林. 某发动机整机模态分析[J]. 火箭推进, 2012, 38(4): 55-59,80.
[15]韩文超, 王政时, 骆晓臣. 扰流片式推力矢量气动力数值仿真研究[J]. 计算机仿真, 2012 (7): 84-87.
[16] 宋沛原, 李家文, 唐飞. 轮毂形状对诱导轮性能的影响[J]. 火箭推进, 2012, 38(2): 38-43.

Memo

Memo:
-
Last Update: 1900-01-01