|Table of Contents|

Current status and development trend of space propulsion technologies abroad(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2013年05期
Page:
7-15
Research Field:
专论与综述
Publishing date:

Info

Title:
Current status and development trend of space propulsion technologies abroad
Author(s):
HANG Guan-rong HONG Xin KANG Xiao-lu
Shanghai Institute of Space Propulsion, Shanghai 201112, China
Keywords:
-
PACS:
V434-34
DOI:
-
Abstract:
Space propulsion technologies usually can be divided into four types: conventional chemical propulsion, electric propulsion, micro propulsion and novel propulsion. The conventional chemical propulsion is the mostly-used propulsion technology, whose performance is being improved continuously. The electric propulsion is widely used in various satellite and deep space probes, whose advantages and reliability have been proved, and whose power range is being expanded. Vigorous development of micro satellites calls for active demands of micro propulsion featured by micro thrust, low weight and low power. The novel propulsion technologies, such as green chemical propulsion, solar propulsion, nuclear propulsion, are fast-developed or flight-testing in space. The application and research status of space propulsion technology used in foreign satellites and deep space probes are reviewed, and the development trends are analyzed. Several suggestions are given on the development of domestic space propulsion technologies.

References:

[1]BERGE S, EDFORS A, OLSSON T, et al. Advanced AOCS design on the first small GEO telecom satellite [C]// 60th International Astronautical Congress. Daejon, South Korea: Curran Associates, Inc, 2009: IAC-09.C1.6.10.
[2]MEYER M. In-Space propulsion systems roadmap-technology aera 02[EB/OL].[2012-11-28]. http://www.nasa.gov.
[3]Liou Larry C, Dankanich John W, Alexander Leslie L. NASA In-Space Advanced Chemical Propulsion Deve- lopment in Recent Years, AIAA-2009-5126[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,Denver, USA, 2009.
[4]MATTHIJSSEN R, VAN PUT P. “State-of-the art” gaug- ing components for improved propellant management on 3-AXIS Stabilized Spacecraft, AIAA-2006-4714[R]. USA: AIAA, 2006.
[5]DUDNEY R S. Rescue in space [J]. AIR FORCE Maga- zine, 2012(1): 38-41.
[6]Hughes/Boeing. HS-601 / BSS -601 [EB/OL]. [1995-04-07]. http://space.skyrocket.de/doc_sat/hs-601.htm
[7]HSCI. Satmex 5 [EB/OL]. (1998-12-05) [2013-03-22]. http://space.skyrocket.de/doc_sdat/satmex-5.
[8]KILLINGER R, KUKIES R, SURAUER M. Final report on the ARTEMIS salvage mission using electric propulsion, AIAA-2003-4546 [R]. USA: AIAA, 2003.
[9]KAJIWARA Kenichi, IKEDA Masafumi, kOHATA Hiroki. ETS-Ⅷ Ion engine and its operation on orbit, IEPC-2009-048[R]. Ann Arbor, USA: IEPC, 2009.
[10]DEPASQUALE Dominic, CHARANIA A C, KANAYA- MA Hideki. Analysis of the earth-to-orbit launch market for nano and microsatellites, AIAA-2010-860[R]. USA: AIAA, 2010.
[11]MUELLER J. A survey of micro-thrust propulsion op- tions for microspacecraft and formation flying missions [EB/ OL]. [2008-04-09]. http://mstl.atl.calpoly.edu.
[12]BAKER Adam M, CURIEL Alex da Silva, SCHAFFNER Jake, et al. You can get there from here: advanced low cost propulsion concepts for small satellites beyond LEO [J]. Acta Astronautica, 2005 (57): 288-301.
[13]BRUNO C, ACCETTURA A G. Advanced propulsion systems and technologies, today to 2020[R]. Reston, USA: American Institute of Aeronautics and Astronautics, Inc., 2008.
[14]SCHARLEMANN C. Green advanced space propulsion: a project status, AIAA-2011-5630 [R]. USA: AIAA, 2011.
[15]ANFLO K, CROWE B. In-space demonstration of an ADN -based propulsion system, AIAA-2011-5832[R]. USA: AIAA, 2011.
[16]KAWAGUCHI Junichiro. World's first solar sail, IKAROS, and hybrid solar power sail for outer solar systems [EB/OL]. [2011-04-05]. http://www.aiaa.org.
[17]SEMENKIN A V, TESTOEDOV N A, YAKIMOV E N, et al. Overview of electric propulsion activity in Russia [C]// 30th International Electric Propulsion Conference. Flo- rence, Italy: IEPC, 2007: 267-275.
[18]CASAREGOLA C, CESARETTI G, ANDRENUCCI M. The European HiPER programme: high power electric propulsion technology for space exploration[C]// 32nd International Electric Propulsion Conference. Wiesbaden, Germany: IEPC, 2011: 209-215.
[19]杭观荣, 康小录. 美国AEHF军事通信卫星推进系统及其在首发星上的应用[J]. 火箭推进, 2011, 37(6): 1-8.
[20]姜文龙, 杨成虎, 林庆国. 高性能卫星用490 N轨控发动机研究进展[J]. 火箭推进, 2011, 37(6): 9-13.

Memo

Memo:
-
Last Update: 1900-01-01