|Table of Contents|

Thermal efficiency analysis of solar thermal propulsion system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2013年05期
Page:
23-30
Research Field:
研究与设计
Publishing date:

Info

Title:
Thermal efficiency analysis of solar thermal propulsion system
Author(s):
XING Bao-yu HUANG Min-chao CHENG Mou-sen LIU Kun
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Keywords:
solar thermal propulsion thermal efficiency performance analysis
PACS:
V439.6
DOI:
-
Abstract:
Solar thermal propulsion system can provide a high special impulse of 800 s~900 s when it takes small molecular weight gas as propellant, but it is a significant issue to improve the heat transfer efficiency of the thermal propulsion system. The basic analysis models of main parts in the solar thermal propulsion system were built. Based on thermal analysis performed by using the finite element method, the correlative parameters of the system at different working conditions were calculated. The influence of the main parameters of each assembly unit on the improvement of thermal efficiency and propulsive efficiency of the solar thermal propulsion system was analyzed. The change rule of system efficiency in different working status was achieved. The measures to improve the thermal efficiency of the system are proposed in this paper.

References:

[1]SCHARFE D B, YOUNG M. A study of solar thermal propulsion system enhancement via thermal storage and thermal-electric conversion[C]// The 57th JANNAF Joint Subcommittee Meeting. Colorado Springs, CO: JANNAF, 2010: 345-352.
[2]SCHARFE D B, YOUNG M P, GILPIN M R, et al. High energy advanced thermal storage for spacecraft solar ther- mal power and propulsion systems, A887455[R]. Huntsville, AL: JANNAF, 2011.
[3]SHIMIZU M, ITOH K, NAKAMURA Y. Very small solar thermal thruster made of single crystal tungsten for micro/nanosatellites[R]. Huntsville, Alabama, USA: AIAA, 2000.
[4]OLSEN A D, CADY E C, JENKINS D S, et al. Solar ther- mal upper stage cryogen system engineering checkout test, AIAA 99-2604[R]. Los Angeles, California, USA: AIAA, 1999.
[5]KENNEDY F G, PALMER P L. Preliminary design of a micro-scale solar thermal propulsion system, AIAA 2002-3928[R]. USA: AIAA, 2002.
[6]WONG W A, GENG S M, CASTLE C H, et al. Design, fabrication and test of a high efficiency refractive se- condary concentrator for solar applications, AIAA 2000-2998[R]. USA: AIAA, 2000.
[7]SALEM J A, QUINN G D. Failure analysis of sapphire re- fractive secondary concentrators, NASA/TM-2009-215802 [R]. USA: NASA, 2009.
[8]夏广庆, 毛根旺, 唐金兰, 等. 折射式二次聚光太阳能热推力器性能预示[J]. 固体火箭技术, 2005, 28(2): 79-82.
[9]张纯良, 王平. 太阳能火箭发动机吸热/推力室流场及性能计算[J]. 航空动力学报, 2006, 21(5): 943-948.
[10]张纯良, 张振鹏, 魏志明. 太阳能火箭发动机聚光器设计方法[J]. 航空动力学报, 2004, 19(4): 557-561.
[11]BREND N. System study for a solar thermal thruster with thermal storage, AIAA 2003-5031[R]. USA: AIAA, 2003.
[12]COLONNA G, CAPITTA G, CAPITELLI M, et al. Model for ammonia solar thermal thruster [J]. Journal of Ther- mophysics and Heat Transfer, 2006, 20(4): 772-779.
[13]杨杰, 杨立军. 推进剂通道结构对太阳热发动机影响数值研究[J]. 航空动力学报, 2010, 25(4): 200-206.
[14]KHARYTONOV O, KIFORENKO B. Finite-thrust opti- mization of interplanetary transfers of space vehicle with bimodalnuclear thermal propulsion, IAC-10-C1.9.7[R].USA: IAF, 2010.
[15]ANDERSON D J, PENCIL E, PETERSON T. et al. In- -Space propulsion technology products for NASA's future science and exploration missions, N20110016163[R]. USA: NASA,2011.
[16]FINOGENOV S, KUDRIN O. Spectral-selective solar thermal micro-thruster, AIAA 2008-4863[R]. USA: AIAA, 2008.
[17]LEENDERS H C M, ZANDBERGEN B T C. Develop- ment of solar thermal thruster system, IAC-08-D1.1.01[R]. USA: IAF, 2008.

Memo

Memo:
-
Last Update: 1900-01-01