|Table of Contents|

Numerical analysis of inner flow field of pulsed plasma thruster(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年01期
Page:
39-44
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical analysis of inner flow field of pulsed plasma thruster
Author(s):
XIE Ze-hua ZHOU Jin LI Zi-ran
Key Laboratory of Scramjet Technology, National University of Defense Technology, Changsha 410073, China
Keywords:
pulsed plasma thruster magnetohydrodynamics model flow process numerical ana- lysis
PACS:
V439+.2
DOI:
-
Abstract:
A magnetohydrodynamics model in the form of the generalized Lagrange multiplier was adopted to simulate the inner flow field of a pulsed plasma thruster with rectangular geometry. Analyses on the flow process of plasma show that the plasma is accelerated to a high velocity to eject from the electrode channel under the strong electromagnetic acceleration in the beginning of the discharge. By contrast with this, the plasma moves downstream slowly in the later period of the discharge when aerodynamic force instead of electromagnetic force dominates the acceleration process. It indicates that the electromagnetic impulse accounts for the majority of the impulse bit of the thruster, and that the performance of this kind of thruster would benefit from the enhancement of electromagnetic acceleration effects.

References:

[1]杨乐, 李自然, 尹乐, 等. 脉冲等离子体推力器研究综述[J]. 火箭推进, 2006, 32(2): 32-36.
[2]JAHN R G. Physics of electric propulsion[M]. New York: McGraw-Hill, 1968.
[3]WALTZ P M. Analysis of a pulsed electromagnetic plasma thruster[D]. USA: Massachusetts Institute of Technology, 1969.
[4]THOMAS H D. Numerical simulation of pulsed plasma thrusters[D]. USA: The University of Tennessee, 2000.
[5]MIKELLIDES Y G. Theoretical modeling and optimization of ablation-fed pulsed plasma thrusters[D]. USA: The Ohio State University, 1999.
[6]POWELL K G. An approximate Riemann solver for magne- tohydrodynamics, ICASE 94-24[R]. USA: Langley, 1994.
[7]DEDNER A, KEMM F, KRONER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. Journal of Computational Physics, 2002, 175(2): 645-673.
[8]李自然. 脉冲等离子体推力器设计与性能的理论与实验研究[D]. 长沙: 国防科技大学, 2008.
[9]李定, 陈银华, 马锦秀, 等. 等离子体物理学[M]. 北京: 高等教育出版社, 2006.
[10]GUMAN W J. Designing solid propellant pulsed plasma thrusters, AIAA 75-0410[R]. Farmingdale, New York: Fairchild Republic Company, 1975.
[11]PALUMBO D J, GUMAN W J. Propellant sidefeed-shot discharge thruster studies, N72-20756[R]. New York: Fairchild Industries, Inc, 1972.
[12]BURTON R L, WILSON M J, BUSHMAN S S. Energy balance and efficiency of the pulsed plasma thruster, AIAA 98-3808[R]. Urbana, IL: University of Illinois, 1998.
[13]杨乐, 周进, 尹乐, 等. 脉冲等离子体推力器工作过程一维磁流体动力学数值模拟[J]. 国防科技大学学报, 2007, 29(5): 14-17.
[14]王飞, 周前红, 郭少峰, 等. 电弧推力器流场的数值计算[J]. 火箭推进, 2010, 36(2): 20-25.
[15]廖宏图, 余水淋, 康小录. 霍尔推力器内部等离子体流场数值分析[J]. 推进技术, 2005, 26(3): 270-275.
[16]尹乐, 周进, 杨乐, 等. 脉冲等离子体推力器羽流预测计算研究[J]. 宇航学报, 2010, 31(1): 167-172.

Memo

Memo:
-
Last Update: 1900-01-01