|Table of Contents|

Effects of process parameters on thickness of pyrolytic carbon interface layer by CVD(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年03期
Page:
77-82
Research Field:
工艺与材料
Publishing date:

Info

Title:
Effects of process parameters on thickness of pyrolytic carbon interface layer by CVD
Author(s):
BAI Long-teng WANG Yi YANG Xiao-hui
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
-
PACS:
V258+.3-34
DOI:
-
Abstract:
By taking methane(CH4)as carbon source precursor gas and 3D needle-punched carbon fiber-prefabricated form as the deposition matrix, the effects of the deposition time, pressure and prefabricated form thickness in chemical vapor deposition (CVD) process on the thickness of pyrolytic carbon (PyC) interface layer were studied. Based on the study, the CVD technological parameters needed by preparing PyC interface layer with appropriate thickness on the surface of carbon fiber were optimized. Analysis on these effects reveals that, based on the existing furnace, with a deposition temperature of 1 000 ℃ and CH4 flow speed of 500 ml/min, deposition period 10 h and deposition at 5 kPa can produce the PyC interface layer with suitable thickness on the inner and outer surface of the fiber-prefabricated form with 5 mm thickness. If the thickness of carbon fiber- prefabricated form needs to be increased to 10 mm, the deposition period should be prolonged to 15 h while the

References:

[1]成来飞, 张立同, 梅辉, 等. 化学气相渗透工艺制备陶瓷基复合材料[J]. 上海大学学报(自然科学版), 2014, 20(1): 1-18.
[2]张立同, 陈立富, 张颖, 等. 高性能碳化硅陶瓷纤维现状, 发展趋势与对策[C]//. 复合材料-基础, 创新, 高效: 第十四届全国复合材料学术会议论文集(上). 北京: 中国宇航出版社, 2006.
[3]NASLAIN R R. Fiber-reinforced ceramic matrix compo- sites: state of the art, challenge and perspective [J]. Kompozyti (Composites), 2005 (5): 1-2.
[4]XU Yong-dong, CHENG Lai-fei, ZHANG Li-tong, et al. Mechanical properties of 3D fiber reinforced C/SiC composites[J]. Materials Science and Engineering A, 2001, 300(1-2): 196-202.
[5]XU Yong-dong, ZHANG Li-tong, CHENG Lai-fei, et al. Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J]. Carbon, 1998, 36(7-8): 1051-1056.
[6]BERTRAND S, DROILLARD C, PAILLER R, et al. TEM structure of (PyC/SiC) multilayered interphases in SiC/SiC composites[J]. Journal of the European Ceramic Society, 2000, 20(1): 1-13.
[7]BERTRAND S, PAILLER R, LAMON J. Influence of strong fiber/coating interfaces on the mechanical behavior and lifetime of Hi-Nicalon/(PyC/SiC)n/SiC minicompo- sites[J]. Journal of the American Ceramic Society, 2001, 84(4): 787-794.
[8]孟志新, 成来飞, 刘善华, 等. PyC 层对 SiC 纤维束及 Mini SiC/SiC 复合材料拉伸性能和强度分布的影响[J]. 材料导报, 2011, 25(16): 5-7.
[9]朱云洲, 黄政仁, 董绍明, 等. PyC/SiC 界面相对 PIP 法制备 3D HTAC/SiC 复合材料性能的影响[J]. 新型炭材料, 2007, 22(4): 327-331.
[10]焦健, 邱海鹏, 王宇, 等. 不同界面层体系对 SiCf/SiC 复合材料性能影响的研究[C]//. 第 17 届全国复合材料学术会议(陶瓷基, C/C及金属基复合材料分论坛)论文集. [出版地不详]: [出版者不详], 2012.
[11]于新民, 周万城, 郑文景, 等. 碳界面层制备工艺对 SiCf/SiC 材料力学性能的影响[J]. 稀有金属材料与工程, 2009, 38(A02): 462-465.
[12]YANG W, HIROSHI A, TETSUJI N, et al . Hi-Nicalon fiber-reinforced CVI-SiC matrix composites: effects of PyC and PyC-SiC multilayers on the fracture behaviors and flexural properties[J]. Materials Transactions, 2002, 43(10): 2568-2573.
[13]KANG S M, KIM W J, YOON S G, et al. Effects of the PyC interface coating on SiC nanowires of SiCf/SiC composite[J]. Journal of Nuclear Materials, 2011, 417(1/3): 367-370.
[14]CHENG Lai-fei, WU Shou-jun, ZHANG Li-tong, et al. Mechanical self-adaptability of a SiC/PyC/SiC compo- site during oxidation in air[J]. Journal of Composite Materials, 2009, 43(4): 305-313.
[15]赵春年, 成来飞, 张立同, 等. 丙烯化学气相沉积热解碳的动力学研究[J]. 无机材料学报, 2008, 23(6): 1165- 1170.
[16]李克智, 和永岗, 李贺军, 等. 化学气相沉积低温热解炭的微观组织结构与沉积模型[J]. 新型炭材料, 2012, 27(2): 81-86.
[17]李强, 罗瑞盈, 程永宏, 等. 热解炭的化学气相沉积机理和组织形貌[J]. 炭素技术, 2003 (4): 1-6.
[18]KOTLENSKY W. Chemistry and physics of carbon [M]. New York: Marcel Dekker, 1973.

Memo

Memo:
-
Last Update: 1900-01-01