|Table of Contents|

Research of composite over-wrapped pressure vessels for space application(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年04期
Page:
35-42
Research Field:
研究与设计
Publishing date:

Info

Title:
Research of composite over-wrapped pressure vessels for space application
Author(s):
FENG Xue SHEN Jun TIAN Gui YAN Fei
Shanghai Institute of Space Propulsion, Shanghai 201112, China
Keywords:
composite pressure vessel application research resin matrix selection nondestructive inspection
PACS:
V432-34
DOI:
-
Abstract:
The latest development of composite over-wrapped pressure vessels (COPVs) for space applications are summarized based on a study of published literatures and some typical samples on applications of overseas spacecrafts are introduced in this paper. Besides, some valuable information about the metal liner, fiber and resin matrix of COPVs is presented respectively. R&D and application trends of cryogenic composite pressure vessel are described. The properties of the metal liner and fiber behave very well in cryogenic temperature environment. The selection principles of resin matrix in cryogenic temperature environment are pointed out emphatically. The research status and prospect of nondestructive detection for COPVs are discussed. It is pointed out that COPV NDE technologies will advance to high efficiency, real time, precise positioning, quantitative analysis and overall defect detection.

References:

[1]MCLAUGHLAN P B, FORTH S C, GRIMES-LEDESMA L. Composite overwrapped pressure vessels, NASA SP-2011-573[R]. USA: NASA, 2011.
[2]张天平. 空间应用复合材料压力容器研究技术[J]. 上海航天, 2002 (1): 54-58.
[3]CHANG J B. Development of COPV-related standards, AIAA2007-2146[R]. USA: AIAA, 2007.
[4]侯继东. 国外复合材料压力容器的发展及应用[J]. 载人航天信息, 1995 (4): 34-37.
[5]王荣国, 矫维成, 刘文博, 等. 轻量化复合材料压力容器研究进展[J]. 航空制造技术, 2009 (15): 86-89.
[6]SCHNEIDER J, DYESS M, HASTINGS C, et al. Light- weight cryogenic composite over-wrapped pressure vessels (COPVS) for launch vehicle applications, AIAA 2007-2148[R]. USA: AIAA, 2007.
[7]MALLICK K, CRONIN J, RYAN K, et al. An integrated systematic approach to linerless composite tank development, AIAA 2005-2089[R]. USA: AIAA, 2005.
[8]PATTERSON J, DELAY T. Material evaluation for filament wound pressure vessels[C]//Proceedings of 46th International SAMPE Symposium and Exhibition on a Materials and Processes Odyssey. California, USA: [s.n.], 2001:1307-1315.
[9]郑传祥. 复合材料压力容器[M]. 北京: 化学工业出版社, 2006.
[10]杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.
[11]HARRIS J, GRANDE R, HIGGINS M. Ultralight propellant tank for NASA space technology, AIAA 2003- 4608[R]. USA: AIAA, 2003.
[12]OLSON M A. Super robust and ultra-light pressure vessels using new technology[C]// Proceedings of 49th International SAMPE Symposium and Exhibition on Ma- terials and Processing Technology. California, USA: [s.n.], 2004: 111-120.
[13]RAY D M, GREENE N J, REVILOCK D, et al. High pressure composite overwrapped pressure vessel (COPV) development tests at cryogenic temperatures, AIAA 2008-1912[R]. USA: AIAA, 2008.
[14]PATTERSON J, DELAY T, SCHNEIDER J, et al. High pressure COPVS for cryogenic storage applications, AIAA 2006-4718 [R]. USA: AIAA, 2006.
[15]DELAY T, PATTERSON J, SCHNEIDER J, et al. Development of composite overwrapped pressure vessels for high pressure cryogenic storage applications [C]//Proceedings of 51st International SAMPE Symposium and Exhibition on Creating New Opportunities for the World Economy. California, USA:[s.n.], 2006: 11-18.
[16]SAULSBERRY R, GREENE N, CAMERON K, et al. Nondestructive methods and special test instrumentation supporting NASA composite overwrapped pressure vessel assessments, AIAA 2007-2324[R]. USA: AIAA, 2007.
[17]赫晓东, 赵俊青, 王荣国, 等. 复合材料压力容器无损检测研究现状[J]. 哈尔滨工业大学学报, 2009, 41(12): 78-82.

Memo

Memo:
-
Last Update: 1900-01-01