|Table of Contents|

Numerical simulation of EBW pool fluid flow field(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年01期
Page:
98-104
Research Field:
工艺与材料
Publishing date:

Info

Title:
Numerical simulation of EBW pool fluid flow field
Author(s):
WANG Kun1 CAI Qiang-shun2
1. Xi’an Bureau, Naval Equipment Department of China, Xi’an 710065, China 2. Xi’an Space Engine Factory, Xi’an 710100, China
Keywords:
electron beam welding flow field heat source model 316L stainless steel
PACS:
V434-34
DOI:
-
Abstract:
Gauss area and rotary Gauss decay body hybrid heat source model was established based on the seam feature of nail-shaped electron beam welding (EBW). The weld pool fluid flow field in EBW was simulated numerically with the finite element software ANSYS FLOTRAN CFD. The vortex flow of liquid-state metal in weld pool under temperature field, interaction among electron beam, weld pool and liquid-state metal vapor, electron beam keyhole effect and energy transmission pattern of keyhole wall as well as liquid-state metal flow mechanism along welding penetration were investigated. The welding specifications (60 kV accelerating voltage, 30 mA electron beam current and 8 mm/s welding speed) of 316L stainless steel were obtained by simulation calculation and solution that inputs thermophysical properties of 316L stainless steel into hybrid heat source model. Applying the above specifications, the welded joint tensile strength of 316L stainless steel specimen reached 425 MPa, which satisfys the design requirement. The comparison result of simulated weld shape and actual weld shape indicates that numerical calculation results is in accordance with actual testing results, which proves the validity and applicability of the heat source model.

References:

[1]何景山, 张秉刚, 张亚斌, 等. 电子束深熔焊匙孔的研究现状[J]. 焊接, 2007 (6): 28-30.
[2]周琦, 刘方军. 电子束深熔焊接过程匙孔动力学研究进展[J]. 焊接学报, 2001, 22(3): 88-92.
[3]汪建华. 焊接数值模拟技术及其应用[M]. 上海: 上海交通大学出版社, 2003.
[4]陈芙蓉, 霍立兴, 张玉凤. 电子束焊接技术在工业中的应用与发展[J]. 电子工艺技术, 2002, 23(2): 56-58.

[5]倪红芳, 凌祥, 涂善东. 多道焊三维残余应力场有限元模拟[J]. 机械强度, 2004, 26(2): 218-222.

[6]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundary[J]. Computer Physics, 1981 (39): 201-225.
[7]CARMIGNANI C, MARES R, TOSELLI G. Transient finite element analysis of deep penetration laser welding process in a single pass buttwelded thick steel plate [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 179(3): 197-214.
[8]吴甦, 赵海燕, 王 煜, 等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004, 25(1): 91-94.
[9]ANTHONY T R, CLINE H E. Surface rippling induced by surface tension gradients during laser surface melting and alloying[J]. Journal of Applied Physics, 1977, 48(9): 3888- 3894.
[10]李春胜, 黄德彬. 金属材料手册[M]. 北京: 化学工业出版社, 2005: 587-596.
[11]丁启湛, 丁成钢, 史春园. 不锈钢的焊接[M]. 北京: 机械工业出版社, 2009: 35-36.
[12]刘黎明, 迟鸣声, 宋 刚, 等. 镁合金激光-TIG复合热源焊接热源模型[J]. 机械工程学报, 2006, 42(2): 82-85.
[13]ARATA Y, ABE E, NABEGATA E N. Dynamic welding phenomena during EB-welding[C]//4th International Col- loquium on Welding and Melting by Electron and Laser Beam. France: CEN SACLAY, 1988: 21-40.
[14]霍厚志. 激光深熔焊过程仿真技术[D]. 太原: 太原科技大学, 2009.
[15]赵 勇. 基于力学平衡条件电子束焊接匙孔形态的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

Memo

Memo:
-
Last Update: 1900-01-01