|Table of Contents|

Stimulation research on performance of pressure regulating module in ultrahigh pressure cold gas propulsion system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年02期
Page:
50-55
Research Field:
研究与设计
Publishing date:

Info

Title:
Stimulation research on performance of pressure regulating module in ultrahigh pressure cold gas propulsion system
Author(s):
ZHANG Tao1 LI Guo-xiu1 WANG Xu-dong1 2 WANG Lu1 YU Yu-song1 LIU Xing1
1. School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China;2. Beijing Institute of Control Engineering, Beijing 100190, China
Keywords:
ultrahigh pressurepressure regulating modulesimulation calculationfilling processstart-up processshutdown process
PACS:
V432-34
DOI:
-
Abstract:
By taking ultrahigh pressure cold gas propulsion system as the research background, numerical stimulation research of the pressure regulating module is carried out in this paper. The properties of pressure regulating, and the influence law of throttle hole diameter and inlet pressure on the pressure regulating module in different stages were achieved by establishing the fluid-solid coupling dynamic mathematical model in pressure regulating module, and defining its working process as three stages (filling, start-up and shutdown). The simulation results show that the increase of throttle hole diameter and inlet pressure can boost the pressure in the pressure stabilizing cavity in different stages, but only the time to reach stable state is different, and the change of valve element displacement also shows certain

References:

[1]苏生, 马巨印, 陈阳. 航天器推进系统气路减压阀温度特性研究[J]. 航天器环境工程, 2012, 29(4): 445-449.
[2]曾维亮. 航天姿控发动机减压阀的研究[J]. 火箭推进,2001 (5): 6-11.
[3]张钊, 周成, 周华. 超高压大流量直动式气动减压阀的性能研究[J]. 液压与气动, 2010 (6): 4-6.
[4]SONG X, CUI L, CAO M, et al. A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel[J]. Energy Conversion and Management, 2014, 81: 407-419.

[5]DARBY R. The dynamic response of pressure relief valves in vapor or gas service, part I: Mathematical model[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1262-1268.

[6]王宣银, 陈奕泽, 刘荣, 等. 超高压气动比例减压阀的设计与仿真研究[J]. 浙江大学学报: 工学版, 2005, 39(5): 614-617.
[7]杨明国. 高压空气减压阀的动态性能仿真[J]. 中国舰船研究, 2010, 5(4): 56-60.
[8]刘上, 刘红军, 徐浩海. 单向阀流路系统自激振荡特性研究[J]. 火箭推进. 2011, 37(3): 1-5, 17.
[9]BROWNELL M. Design and analysis of a cold gas propulsion system for stabilization and maneuverability of a high altitude research balloon[D/OL]. [2014-04-01]. http:// www.linkedin.com/in/ne.
[10]MATTICARI G, MATERASSI M, NOCI G, et al. Use of a“wide dynamic range”electronic flow regulator to increase the flexibility and versatility of electric and cold gas small propulsion systems[C]// IEPC. [S.l.]: [s.n.], 2011: 96-102.
[11]PAHL R A. Integration and test of a refrigerant-based cold-gas propulsion system for small satellites[J/OL]. [2011-10-23]. http://www.docin.com.
[12]BURGES J D, HALL M J, LIGHTSEY E G. Evaluation of a dual-fluid cold-gas thruster concept[J]. International Journal of Mechanical and Aerospace Engineering, 2012, 6: 232-237.
[13]LUGINI C, ROMANO M. A ballistic-pendulum test stand to characterize small cold-gas thruster nozzles[J]. Acta Astronautica, 2009, 64(5): 615-625.
[14]严家騄. 工程热力学[M]. 北京: 高等教育出版社, 2001.

Memo

Memo:
-
Last Update: 1900-01-01