|Table of Contents|

Cold flow test of outflow influence on vehicle with aerospike nozzle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年03期
Page:
46-51
Research Field:
研究与设计
Publishing date:

Info

Title:
Cold flow test of outflow influence on vehicle with aerospike nozzle
Author(s):
ZHANG Xiao-guang1 CHENG Cheng2 LIU Yu3
1. Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 2. AVIC Commercial Aircraft Engine Co., Ltd., Shanghai 201108, China; 3. Beijing Univ. of Aeronautics and Astronautics, Beijing 100191, China
Keywords:
aerospike nozzlelift bodyoutflow interferencewind tunnelcold flow test
PACS:
V434-34
DOI:
-
Abstract:
Cold flow tests on effects of outflow on flow field and performance of vehicle with aerospike nozzle during flight with four typical Mach numbers are presented in this paper. The model for cold flow test is composed of a truncated linear plug nozzle and a lift body. In the tests, the nozzle flow field structure was displayed with schlieren display technology, and the axial and lift forces of the model were measured under different conditions. The results show that the existence of outflow leads to an increase in nozzle jet expansion degree and lateral flow intensity, and the thrust loss (includes over expansion loss and lateral flow loss) of aerospike nozzle, caused by outflow, is between 4.7% and 9.6% , in which the over

References:

[1]RUF J H, MCCONNAUGHEY P K. The plume physics behind aerospike nozzle altitude compensation and slipstream effect, AIAA 97-3218[R]. USA: AIAA,1997.
[2]SILVER R. Final report: advanced aerodynamic spike configurations: volume 1, analytical and cold flow studies, AFRPL-TR-67-246-Vol I[R]. USA: Rocketdyne Division, Rockwell International Corporation, 1967.
[3]SILVER R. Final report, advanced aerodynamic spike configurations: volume 2, hot fire investigation: basic, slipstream and liquid TVC, AFRPL-TR-67-246-Vol II [R]. USA: Rocketdyne Division, Rockwell International Corporation, 1967.
[4]NASUTI F, ONOFRI M. Analysis of in-flight behavior of truncated plug nozzles, AIAA 2000-3289[R]. USA: AIAA, 2000.

[5]NASUTI F, ONOFRI M. A numerical study of wake behavior in plug nozzles, AIAA 2001-1894[R]. USA: AIAA, 2001.

[6]ACIORRI R, ASUTI F, ABETTA F. Evaluation of turbulence modeling in supersonic afterbody comput- ations, AIAA 2001-3039[R]. USA: AIAA 2001.
[7]HAGEMANN G, IMMICH H, TERHARDT M. Flow phenomena in advanced rocket nozzles - the plug nozzle, AIAA 98-3522[R]. USA: AIAA, 1998.
[8]刘君, 郭正. 超音速外流与塞式喷管形成的干扰流场数值模拟[J]. 国防科技大学学报, 2000, 22(5): 15-18.
[9]李江, 郭唐稳, 马家欢. 外流干扰对气动塞式喷管性能影响的数值模拟研究[J]. 宇航学报, 2001, 22(2): 32-38.
[10]戴梧叶, 刘宇, 张正科, 等. 外流对塞式喷管性能的影响[J]. 空气动力学学报, 2002, 20(1): 32-38.
[11]王长辉, 刘宇. 外流对塞式喷管流场和性能的影响[J]. 北京航空航天大学学报, 2006, 32(2): 130-134.
[12]王长辉, 刘宇, 覃粒子. 塞式喷管设计和性能验证[J]. 空气动力学报, 2008, 26(2): 139-144.
[13]覃粒子, 刘宇, 王一白. 线性塞式喷管型面快速设计方法[J]. 推进技术, 2004, 25(2): 144-147.
[14]PRABHU D K, LOOMIS M P, VENKATAPATHY E, et al. X-33 aerothermal environment simulations and aero- thermodynamic design, AIAA 98-868-111[R]. USA: AIAA, 1998.
[15]李军伟, 刘宇, 王长辉. 塞锥侧板对直排塞式喷管性能的影响[J]. 推进技术, 2004, 25(3): 252-258.

Memo

Memo:
-
Last Update: 1900-01-01