|Table of Contents|

Development status of micro-thrust testing technology in China(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年05期
Page:
7-11
Research Field:
专论与综述
Publishing date:

Info

Title:
Development status of micro-thrust testing technology in China
Author(s):
LIU Wanlong ZHU Haowei SUN Shujiang LIU Kuiqin ZHENG Ran
Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
Keywords:
micro thruster micro thrust testing technology
PACS:
V433.9-34
DOI:
-
Abstract:
With the continuous development of space technology, the demands of micro propulsion systems which are used for the attitude and orbital control for small satellite and deep space detection spacecraft become more and more obvious. The progress of the micro-thrust testing technology at abroad is briefly discussed and the difficulties of micro thrust testing are analyzed in this paper. Several typical micro-thrust testing modes are introduced. The advantages and disadvantages of these modes are analyzed. Comprehensive analysis shows that the structure stability of the full elastic mode is better and its testing accuracy is good. It is a worth development mode for micro-thrust testing.

References:

[1]MERKOWITZ, S M, MAGHAMI P G SHARMA A, et al. A μ Newton thrust-stand for LISA[J]. Physics Review Letters, 2000, 85: 2869-2872.
[2]SASOK A, ARAKAWA Y. A high-resolntion thrust stand for ground tests of low-thrust space propulsion devices[J]. Review of Science Instrument, 1993, 64(3): 719-723.
[3]刘明侯, 孙建威, 陈义良, 等. 微推进器推力测试技术[J].力学与实践, 2003, 25(3): 10-14
[4]陈健, 毛威, 扈延林, 等. 我国电推进技术的工程应用和途径[C]. 北京: 第八届中国电推进技术学术研讨会, 2012.

[5]张郁. 电推进技术的研究应用现状及其发展趋势[J]. 火箭推进, 2005, 31(2): 27-35. ZHANG Yu. Current status and trend of electric propul- sion technology development and application[J]. Journal of rocket propulsion,2005, 31(2): 27-35.

[6]刘向阳, 范宁军, 李科杰. 微型推进器推力测试的现状及发展趋势[J]. 测控技术, 2004, 23(5): 12-16.
[7]HAAG T W. Thrust stand for high-power electric propulsion devices[J]. The Review of Scientific Instruments, 1991, 62(5): 1186-1191.
[8]MERKOWITZ SM, MAGHAMI PG, SHARMA A, et al. A μN Newton thrust-stand for LISA[J]. Phys Rev Lett, 2000, 85: 2869 -2872.
[9]HAAG TW. Thrust stand for pulsed plasma thruster[J]. Review of Scientific Instruments, 1997, 68(5): 2060-2067.
[10]HOSKINS WA, WILSON MJ, WILLEY MJ, et al. PPT development efforts at Primex Aerospace Company, AIAA99-2291[R]. USA: AIAA, 1999.
[11]刘伟亮, 吴建军. 机电一体化推力测试系统的研制与应用[D]. 长沙: 国防科技大学宇航与材料工程学院, 2004.
[12]沈岩. 低功率水电弧加热发动机的实验研究[D]. 北京: 清华大学, 2004.
[13]李腾, 潘文霞, 林烈, 等. 一种电弧加热推进器推力测试架[J]. 宇航计测技术, 2008, 28(2): 17-20.
[14]姜海, 赵平辉 . 基于多孔介质燃烧的小型推进器实验研究[J]. 工程热物理学报, 2009, 30(1): 169- 172.
[15]岑继文, 徐进良. 真空环境下微推力测量的研究[J]. 宇航学报, 2008, 29(2): 621-625.
[16]赵宝瑞, 李晶. 电火箭微小推力自动测量装置研究[J]. 导弹与航天运载技术, 2000, 29(2): 40-43.
[17]赵宝瑞, 李晶, 蒋金伟. 微小推力自动测量系统研究[J].宇航计测技术, 2000, 20(4): 31-35.
[18]康小录, 汪兆凌, 汪南豪. 稳态等离子体推力器低功率工作模式实验研究[J]. 推进技术, 2001, 22(4): 326-328.
[19]杨乐, 李殿东. 脉冲等离子体推力器实验系统[J]. 真空, 2008, 45(4): 41-44.
[20]洪延姬, 土广宇, 窦志国. 激光烧蚀微推进器研究进展[J]. 航空学报, 2009, 30(9): 1555-1563.
[21]方娟, 洪延姬, 叶继飞, 等. 激光干涉法在扭摆法测量微冲量中的应用[J]. 推进技术, 2010, 31(1): 109-122.
[22]宁中喜. 三丝扭摆微推力在线测量方法及不确定度分析[J]. 测控技术, 2012, 31(5): 45-48.
[23]余水琳, 康小录. VF-6大型电推进试验设备研制[C]. 北京: 第八届中国电推进技术学术研讨会, 2012.
[24]汤海滨, 刘畅, 向民, 等. 微推力全弹性测量装置[J]. 推进技术, 2007, 28(6): 703-706.
[25]周伟静, 洪延姬, 叶继飞, 王广宇. 一种毫秒脉宽激光烧蚀微推力器的设计与实现[C]. 北京: 第八届中国电推进技术学术研讨会, 2012.
[26]LILLY T C, KETSDEVER A D, PANCOTTI A P, et al. Development of a specific impulse balance for capillary discharge pulsed plasma thrusters[J]. Journal of Propulsion and Power, 2009, 25(3): 823-826.

Memo

Memo:
-
Last Update: 1900-01-01