|Table of Contents|

Numerical simulation of air turbo rocket engine at windmilling state(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年06期
Page:
16-20
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical simulation of air turbo rocket engine at windmilling state
Author(s):
ZHANG Liuhuan LU Wanruo
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
air turbo rocket engine windmilling state numerical simulation in
PACS:
V434-34
DOI:
-
Abstract:
Under the flight condition that is flight altitude 20 km and mach number 3, numerical simulation of Air Turbo Rocket engine(ATR) at windmilling state is presented in the paper. Based on the structure of ATR, the 3-D numerical model is established, and the flowfield at different appointed revs is obtained by using the method of computational fluid dynamics. It's found that static pressure decreases and the velocity increases at the entrance of ATR as the revs of compressor rotor increases. Meanwhile taking that the value of torque is zero as the criterion of windmilling state, it is confirmed that under the given flight condition the revs of ATR at windmilling state is about 6 900 r/min, and the internal drag is about 2 170 N.And the total pressure loss is about 61% all through the engine. Through the compressor, the total pressure loss reaches about 32.6%.

References:

[1]TAKESHI K. Combined-cycle engines, encyclopedia of aerospace engineering[M]. [S.l.]: John Wiley & Sons, 2010.
[2]NOBUHIRO T. Development study on airtur- boramjet, developments in high-speed-vehicle propulsion systems[M]. [S.l.]: Progress in Astronautics and Aeron-autics, 1996.
[3]李特维诺夫 尤·阿. 航空涡轮喷气发动机的特性和使用性能[M]. 国防工业出版社, 1986.
[4]王占学, 刘增文. 某型燃气涡轮发动机风车状态内阻力的计算[J]. 燃气涡轮试验与研究, 2006, 19(3): 8-10.

[5]刘志友, 侯敏杰, 文刚. 航空发动机风车阻力的试验研究[J]. 航空动力学报, 2006, 21(2): 391-395.

[6]田琳, 陶冶, 申晓霞. 民用涡扇发动机空中启动风车转速研究[J]. 工程与试验, 2013, 53(1): 6-9.
[7]杨欣毅, 沈伟, 刘海峰, 董可海. 一种弹用涡喷发动机风车起动数值仿真方法[J]. 航空动力学报, 2015, 25(8): 1776-1782.
[8]张东方, 李应红, 尉询楷. 计算涡扇发动机风车起动特性的辨识模型[J]. 航空动力学报, 2007, 22(8): 1320- 1324 .
[9]万照云. 微型涡轮发动机风车起动特性研究[D]. 南京航空航天大学, 2011.
[10]CONRAD E W, DURHAM J D. Preliminary results of an altitude-wind-tunnel investigation of a TG-10CA gas turbine-propeller engine Ⅱ-Windmilling characteristics, NACA RM No.E7G25 [R]. USA: NACA, 1947
[11]CONRAD E W., DURHAM J D. Preliminary results of an altitude-wind-tunnel investigation of an axial-flow gas turbine-propeller engine II- Windmilling characteristics, NACA RM No.E8F10a[R]. USA: NACA, 1948.
[12]FLEMING W A, DIETZ R O, Jr. Altitude-wind-tunnel investigation of Westinghouse 19B-2, 19B-8, and 19XB-1 jet-propulsion engines III performance and windmilling drag characteristics, NACA RM No.E8J28b [R]. USA: NACA, 1948
[13]SOBOLEWAKI A E, FARLEY J M. Steady-state engine windmilling and engine speed decay characteristics of an axial-flow turbojet engine, NACA RM No.E51I06[R]. USA: NACA, 1951.
[14]VINCENT K R, HUNTLEY S C., WILSTED H D. Comparison of locked-rotor and windmilling drag characteristics of an axial-flow-compressor type turbojet engine, NACA RM No.E51K15[R]. USA: NACA, 1952.
[15]南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进, 2008, 34(6): 31-35. NAN Xiangyi, WANG Shuanhu, LI Ping .Investigation on status and prospect of air turbine rocket[J], Journal of Rocket Propulsion, 2008, 34(6): 31-35.
[16]李文龙, 郭海波, 南向谊. 空气涡轮火箭发动机热力循环特性分析[J]. 火箭推进, 2015, 41(4): 48-54. LI Wen-long, GUO Hai-bo, NAN Xiang-yi. Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine[J]. Journal of Rocket Propulsion, 2015, 41(4): 48- 54.

Memo

Memo:
-
Last Update: 1900-01-01