|Table of Contents|

Key technologies in integrated design platform for orbit divert and attitude control system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年06期
Page:
27-34
Research Field:
研究与设计
Publishing date:

Info

Title:
Key technologies in integrated design platform for orbit divert and attitude control system
Author(s):
HU Haifeng LI Xiaojin WANG Hongrang LI Ping
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
digitization designorbit divert and attitude control systempropulsion systemkey technology
PACS:
V434-34
DOI:
-
Abstract:
In order to support the digital design for orbit divert and attitude control system, the framework of the integrated design platform for the orbit divert and attitude control system is presented. The five framework structures of resource, service, integration, prototype and application, and their functions are discussed in detail. The four key technologies (collaborative management in design process, data flow and data management in design activity, knowledge database construction and knowledge push application) are investigated. The corresponding solutions for the key technologies are proposed. The collaborative management system in 3D design process, three-V type data flow organization mode, knowledge database management mechanism in three layers are presented in this paper. Both the technological process push and automatic analysis push methods are put forward for knowledge push. The feasibility of the integrated design platform functions and technologies are discussed. It can be regarded as an antecedence investigation for the building of follow-up platform.

References:

[1]陈海东, 沈重, 张冶, 等. 航天数字化应用技术的发展与趋势[J]. 导弹与航天运载技术, 2008 (3): 23-27.
[2]李平. 姿控发动机技术成就与发展[J]. 火箭推进, 2000, 26(1): 29-37. LI Ping. Achievements and development of attitude control engine[J]. Journal of Rocket Propulsion, 2000, 26(1): 29-37.
[3]程奇峰, 马胜利, 向路, 等. 液体火箭发动机协同设计开发环境研究[J]. 火箭推进, 2003, 29(2): 17-23. CHENG Qifeng, MA Shengli, XIANG Lu, et al. Devel- opment of integrated design environment for liquid rocket engine[J]. Journal of Rocket Propulsion, 2003, 29(2): 17- 23.
[4]程奇峰. 发动机研制过程计算机应用软件的工程化开发与管理[J]. 火箭推进, 1996(2): 11-18. CHENG Qifeng. Engineering-oriented development and management of computer programs for engine develop- ment process[J]. Journal of Rocket Propulsion, 1996(2): 11-18.

[5]陈彦林, 向路, 程奇峰. 航天发动机典型部件PDM/ CAPP 集成应用研究[J]. 中国制造业信息化, 2008 (4): 40-41.

[6]李淑艳, 肖明杰, 李晓瑾, 等. 新型活塞泵增压轨/姿控发动机系统方案研究 [J]. 火箭推进, 2012, 38(4): 12-15,26. LI Shuyan, XIAO Mingjie, LI Xiaojin, et al. Scheme study on divert and attitude control engines with piston pump pressurize system[J]. Journal of Rocket Propulsion, 2012, 38(4): 12-15, 26.
[7]解红雨, 张为华, 王锦荷, 等. 固体火箭发动机虚拟样机集成设计环境[J]. 固体火箭技术, 2006, 29(1): 15-18, 51.
[8]MONELL D, VERHAGE M. The advanced engineering environment(AEE) project for NASA's next generation launch technologies (NGLT) program, AIAA 2004-0202 [R]. Reno, USA: AIAA, 2004.
[9]赵雯, 廖馨, 代坤, 等. 虚拟试验验证技术发展思路研究[J]. 计算机测量与控制. 2009,17(3): 437-439.
[10]侯雄, 张冶, 贾倩, 等. 探索知识创新提升研发能力-中国运载火箭技术研究院研究发展中心知识管理实践[J]. 航天工业管理, 2013 (5): 4-12.

Memo

Memo:
-
Last Update: 1900-01-01