|Table of Contents|

Effects of different wall surface orifices on injection characteristics of supersonic air flow(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年04期
Page:
18-22
Research Field:
研究与设计
Publishing date:

Info

Title:
Effects of different wall surface orifices on injection characteristics of supersonic air flow
Author(s):
CAI Fengjuan ZHANG Mei ZHANG Mengzheng
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
supersonic air flow wall surface orifice injection characteristics
PACS:
V432-34
DOI:
-
Abstract:
The efficient mixing of fuel jet and air flow in supersonic gas flow is a precondition to achieve ignition, flame stabilization and high efficiency combustion. The effects of different wall surface orifices on the injection and mixing characteristics have been studied by many researchers at home and abroad. Compared with the common circular orifice, diamond-shaped orifice, wedge-semicircle shaped orifice, arrowhead shaped orifice and stinger-shaped orifice are beneficial to reduction of the boundary layer separation at orifice front edge, and improvement of the penetration depth of the jet flow. Compared with the single orifice injection, the combined orifice can further enhance the mixing effect of the fuel and the incoming air in far field. In this paper, the wall surface injection orifice and engineering application condition that apply to the supersonic combustion are proposed on the basis of analysis of the injection characteristics of various orifices.

References:

[1]费立森, 煤油在冷态超声速气流中喷射和雾化现象的初步研究[D]. 北京: 中国科学技术大学, 2007.
[2]岳连捷, 俞刚. 超声速气流中横向煤油射流的数值模拟. 推进技术, 2004, 25(1): 11-14.
[3]费立森, 徐胜利, 王昌建, 等. 高速冷态气流中煤油雾化现象的实验研究. 中国科学, 2008, 38(1): 72-78.
[4]张丁午, 王强, 胡海洋. 菱形孔射流在超声速流场中的气动特性. 航空动力学报, 2012, 27(10): 2378-2383.
[5]BARBER M J, ROE L A, SCHETZ J A. Simulated c through a wedge-shaped orifice into supersonic flow: AIAA 95-2559[R]. USA:AIAA, 1995.
[6]BARBER M J, SCHETZ J A, ROE LARRY A. Normal,sonic helium injection through a wedge-shaped orifice into supersonic flow[J]. Journal of propulsion and power, 1997, 13(2): 4-9.
[7]HIRANO K, MATSUO A, KOUCHI T, et al. New injector geometry for penetration enhancement of perpendicular jet into supersonic flow: AIAA 2007-5028[R]. USA: AIAA, 2007.
[8]KOUCHI T, HIRANO K, MATSUO A, et al. Combustion performance of supersonic combustor with stinger-shaped fuel injector: AIAA 2008-4503 [R]. USA: AIAA, 2008.
[9]BILLIG F S. Penetration and spreading of transverse jets of hydrogen in a Mach 2.72 airstream: NASA CR-1794[R]. USA: NASA, 1971.
[10]BULMAN M J, FOLSOM Calif. Scramjet injector: US005220787A[P]. 1993-06-08.
[11]MEICENHEIMER H L, GUTMARK E J. Independent stage control of a cascade injector: AIAA2005-3708[R]. USA: AIAA, 2005.
[12]MEICENHEIMER H L, GUTMARK E J. A computational assessment of independent stage control of a cascade injector: AIAA2006-4863[R]. USA: AIAA, 2006.
[13]COX-STOUFFER S K, GRUBER M R, BULMAN M J. A streamlined, pressure-matched fuel injector for scramjet applications: AIAA 2000-3707[R]. USA: AIAA, 2000.
[14]刘昊, 贺云龙, 刘晓伟. 壁面组合孔喷注增强混合研究[J]. 火箭推进, 2016,42 (2): 25-28. LIU Hao, HE Yunlang, LIU Xiaowei. Study on a new injection technology for enhancing mixture by orific set in wall[J]. Journal of rocket propulsion, 2016, 42(2): 25- 28.
[15]仝毅恒, 李清廉, 吴里银, 等. 超声速气流中液体横向射流组合喷注特性实验[J]. 国防科技大学学报, 2014, 36(2): 74-80 .

Memo

Memo:
-
Last Update: 1900-01-01