|Table of Contents|

Thermal control design of divert thruster unit in manned spacecraft under continuous yaw attitude(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年05期
Page:
10-15
Research Field:
研究与设计
Publishing date:

Info

Title:
Thermal control design of divert thruster unit in manned spacecraft under continuous yaw attitude
Author(s):
LIU Haiwa12
1.Shanghai Institute of Space Propulsion, Shanghai 201112, China;2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China
Keywords:
manned spacecraft divert thruster unit continuous yaw attitude thermal analysis thermal control design
PACS:
V434-34
DOI:
-
Abstract:
To meet components temperature requirements of the manned spacecraft divert thruster unit at continuous yaw attitude, original thermal control state on-orbit under high-temperature condition is analyzed through software I-deas/TMG. Thermal control design improvement concept is proposed based on the analysis result. Several rounds of thermal calculation and analysis are conducted for components under high-temperature condition with improved thermal control concept, as well as validation of working power under low-temperature condition. Results show that improved thermal control concept meets the temperature requirements of components of the divert thruster unit under continuous yaw attitude and engineering application is applicable.

References:

[1] 郗晓宁,吴瑞林,潘亮等.航天器的发射窗口及太阳能帆板的最佳受晒[J].中国空间科学技术.1997,5:54-60.
[2] DODD C, GRALHER M,NODING P.Thermal challenges in the development of the Hydrazine propelled roll and attitude control subsystem for the vega launcher: AIAA2012-3495[R].San Diego,California: AIAA,2012.
[3] FARAG A,KHALIL E.Numerical Analysis for Multi-layer Insulation(MLI)Effect on Spacecraft Thermal Control System:AIAA2013-3728[R].San Jose,CA:AIAA,2013.
[4] UEBELHART S,MILLER D.Numerical Conditioning and Reduction of Large Spacecraft Models for Dynamic Analysis:AIAA.AIAA2004-2041[R].Palm Springs,California:AIAA,2004.[5] 汪琼华,汤建华,洪鑫,等.小推力单元肼推力器温度场数值分析[J].火箭推进.2007,33(1):18-22.
WANG Qionghua,TANG Jianghua,HONG Xin.Numerical investigation on low power monopropellant hydrazine thruster[J].Journal of rocket propulsion.2007,33(1):18-22.
[6] 王飞,曾凡文,杨勇.高温接触热阻有限元数值分析[J].气体物理-理论与应用,2010,5(3):65-70.
[7] 丁延卫,赵欣,张立华,等.临界倾角卫星双轴太阳翼热性能研究[J].宇航学报.2008,29(6):2050-2055.
[8] 陈忠贵,张志,廖瑛.航天器太阳翼在轨光照角度建模及仿真分析[J].航天器工程,2012,21(1):37-42.
[9] 卢威,黄家荣,钟奇.载人运输飞船多模式和姿态的外热流[J].中国空间科学技术,2011,2(1):25-32.
[10] 侯增祺,胡金刚.航天器热控制技术-原理及其应用[M].北京:中国科学技术出版社,2007.
[11] 刘海娃,汤建华.浮动断接器热控设计与仿真[J].火箭推进.2015,41(1):23-28.
LIU Haiwa,TANG Jianhua.Design and simulation of thermal control for floating coupling[J].Journal of rocket propulsion.2015,41(1):23-28.
[12]林骁雄,陶家生,温正.离子推力器羽流沉积对卫星热控影响研究[J].火箭推进.2017,43(2):9-16.
LIN Xiaoxiong,TAO Jiasheng,WEN Zheng.Influence of plume deposit of ion thruster on thermal control properties of satellite[J].Journal of rocket propulsion.2017,43(2):9-16.
[13]于波,李春林,杨涛,等.一种基于空间相机热特性的高精度控温方法[J].航天返回与遥感,2014,32(3):84-89.

Memo

Memo:
-
Last Update: 1900-01-01