|Table of Contents|

Research on robot adaptive welding control of thrust chamber outer wall(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年01期
Page:
66-72
Research Field:
工艺与材料
Publishing date:

Info

Title:
Research on robot adaptive welding control of thrust chamber outer wall
Author(s):
YANG Ruikang1 ZHANG Qinlian1 ZHOU Zhou2 DONG Fei1
(1.Xi'an Space Engine Company Limited, Xi'an 710100,China; 2.93956 Troops,Zhangye 361023,China)
Keywords:
thrust chamber of liquid rocket engine robot welding process numerical simulation adaptive control
PACS:
V463
DOI:
-
Abstract:
The robot welding control is studied for the weld groove of thrust chamber outer wall. Based on the acquired groove parameters with the active laser sensor, the adaptive welding for thrust chamber outer wall is achieved and the welding quality for thrust chamber is guaranteed by building the models of groove,parameter and welding. On the basis of “static” studies,the “dynamic” control of the process parameters is studied and an adaptive welding parameter model is established for the groove of outer wall in thrust chamber. Furthermore,the welding adaptive control system is established combined with the fuzzy control algorithm and the welding experiment is accomplished for a thrust chamber simula-tor, which verified the applicability of model and the adaptive welding system. A parameter calculation model of hot wire TIG welding is established for the materials such as S-06 and 1Cr21Ni5Tiin the thrust chamber of liquid rocket engine, which can cover the thrust chamber joint with a depth of 5~12mm. The adjustment factor of the welding adaptive control system is optimized for the control response speed under the SIMULINK platform. The welds of the test joint are well welded, which passes the X-ray examination, and the strength is higher than 90% of the base metal.

References:

[1] 杨春利,张九海,王其隆.TIG焊熔池外激谐振与熔透的关系[J],焊接学报,1990,11(4):193-198.
[2] 孙龙飞, 钱喜乐, 刘琳.沉淀硬化不锈钢用于一体化贮箱工艺技术研究[J].火箭推进,2016, 42(6):62-67.
SUN L F, QIAN X L, LIU L.Application of precipitation hardening stainless steel for integrated tank technology[J].Journal of Rocket Propulsion,2016, 42(6):62-67.
[3] 毛鹏军.弧焊机器人焊缝跟踪系统研究现状及发展趋势[J].电焊机,2001,31(10),9-12.
[4] 陈武柱,张旭东.视觉传感器与焊缝自动跟踪[J].现代制造,2002(18):58-60.
[5] 梁明龙,周凯荣.2219铝合金变极性钨极惰性气体保护焊的焊缝成形模糊控制系统[J].上海交通大学学报, 2016,28(10):42-54.
[6] 汤建锋.热丝 TIG 焊在转炉汽化冷却烟道制造中的应用[J].电焊机,2009,39(4):141-143.
[7] 李游.基于SYSWELD的汽车发动机排气歧管焊接变形数值模拟[D].南昌:南昌大学,2014.
[8] 李振江.基于SYSWELD的焊接接头温度场和残余应力场研究[D].北京:北京交通大学, 2010.
[9] 蔡志鹏.大型结构焊接变形数值模拟的研究与应用[D].北京:清华大学,2001.
[10] 王堃, 蔡强顺.电子束焊接熔池流场数值模拟研究[J].火箭推进, 2015, 41(1):98-104.
WANG K,CAI Q S.Numerical simulation of EBW pool fluid flow field[J].Journal of Rocket Propulsion,2015, 41(1):98-104.
[11] GOLDAK J, CHAKRAVARTI A,BIBBV M.A double ellipsoid finite element model for welding heat sources[J].Metallurgical Transactions B,1994,15(6):299-305.
[12] 张奕.传热学[M].南京:东南大学出版社,2003.
[13] 陈楚,汪建华,罗宇.轴对称热弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987,8(4):196-203.
[14] 蔡洪能, 唐慕尧.TIG焊接温度场的有限元分析[J].焊管,1995,32(1):34-39.

Memo

Memo:
-
Last Update: 2019-02-20