|Table of Contents|

Thermal analysis of low-thrust liquid rocket engine on orbit(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年03期
Page:
15-19
Research Field:
研究与设计
Publishing date:

Info

Title:
Thermal analysis of low-thrust liquid rocket engine on orbit
Author(s):
YAN Bo12 ZHANG Huiqiang1 WANG Bing1
(1.School of Aerospace, Tsinghua University, Beijing 100084, China;2.Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076,China)
Keywords:
liquid rocket engine low-thrust solar radiation numerical simulation thermal analysis
PACS:
V434; TB131
DOI:
-
Abstract:
In order to obtain the influence of solar radiation on the thermal characteristics of low-thrust liquid rocket engine for deep-space-exploration, this paper analyzes the thermal environment of thrust chamber for the liquid rocket engine on orbit.Solar radiation is considered due to its effect on the heterogeneity of temperature field.With considering the structure of a liquid rocket engine, APDL is introduced into ANSYS Workbench to build a finite element model for simulating its three-dimensional steady-state thermal analysis.In view of the actual working situation of low-thrust liquid engine in geosynchronous orbit(GEO), the structural temperature changes of the engine thrust chamber during steady working and not working are analyzed, respectively.The influence of solar radiation on the temperature field is obtained.The solar radiation has little effect on the thrust chamber temperature during the steady state operation.The maximum difference of chamber wall temperature between solar radiation and non-solar radiation is 10 K.When the engine is not working, the engine surface temperature with receiving solar radiation is higher, and the maximum temperature difference is 71.41 K.The solar radiation has a great influence on the non-uniformity of the model.This research provides a criterion to the thermal design of low-thrust liquid rocket engine.

References:

[1] ESPER J.The neptune/triton explorer mission:A concept feasibility study[J].Acta Astronautica,2006,59(8):627-637.
[2] CHIRAVALLE V P.Nuclear electric ion propulsion for three deep space missions[J].Acta Astronautica,2008,61(6):374-390.
[3] 闵桂荣.卫星热控制技术[M].北京:宇航出版社, 1991.
[4] 闵桂荣, 郭舜.航天器热控制[M].北京:科学出版社, 1998.
[5] 刘忠祥, 郑飞, 白院生.空间反射面天线在轨热分析[J].强度与环境,2009,36(5):56-63.
[6] 刘忠祥.星载可展开天线结构特性分析[D].西安:西安电子科技大学,2018.
[7] 孙鑫, 杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(2):32-37. SUN X,YANG C H.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(2):32-37.
[8] 董飞, 何国强.铣槽结构液体火箭发动机推力室壳体热应力分析[J].火箭推进,2007,33(3):43-46. DONG F,HE G Q.Thermal stress analyses of liquid propellant thruster chamber wall with milled slots[J].Journal of Rocket Propulsion,2007,33(3):43-46.
[9] STECHMAN C, WOLL P, FULLER R, et al.A high performance liquid rocket engine for satellite main propulsion[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibi.Reston. Virigina:American Institute of Aeronautics and Astronautics,2000.
[10] 张建伟, 孙冰, 郑力铭.基于非协调单元的液体火箭发动机推力室热结构分析[J].航空动力学报,2010,25(10):2346-2351.
[11] 吴有亮, 张成印, 潘浩, 等.再生冷却燃气对流换热系数计算方法优化研究[J].火箭推进,2018,44(1):22-26. WU Y L, ZHANG C Y,PAN H, et al.Optimization for calculation method of gas convective heat transfer coefficient inside regeneratively-cooled chamber[J].Journal of Rocket Propulsion,2018,44(1):22-26.
[12] 熊元建.小推力液体火箭发动机结构热分析[D].北京:清华大学,2011.

Memo

Memo:
-
Last Update: 2019-06-30