|Table of Contents|

Experimental study on eddy current loss and water friction loss of high-speed shielded motor(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年06期
Page:
66-70
Research Field:
研究与技术
Publishing date:

Info

Title:
Experimental study on eddy current loss and water friction loss of high-speed shielded motor
Author(s):
CHENG Cheng WANG Haoming LI Xiaofang LIN Qingguo
(Shanghai Engineering Research Center of Space Engine, Shanghai Institute of Space Propulsion, Shanghai 201112, China)
Keywords:
high-speed motor shielded motor eddy current loss water friction loss motor efficiency
PACS:
V434.3
DOI:
-
Abstract:
In order to study the eddy current loss and water friction loss of high-speed shielded motor during operation, a shielded motor with nominal power of 7.5 kW and nominal rotation speed 15 000 r/min was designed.The wet and no-load test equipment of shielded motor was built to carry out the “dry-mode” and “wet-mode” no-load tests under different rotational speeds, and the difference between the test results and the calculated results by the empirical formula of shielded motor loss was analyzed.The results show that the eddy current loss of the stator shield sleeve and the water friction loss between rotor and cooling medium have great influence on the efficiency of high-speed shielded motor.Even for the high-speed motor with optimized electromagnetic design, the motor efficiency is still reduced by about 20%~30% after applying the shielding sleeve.The accuracy of existing motor loss calculation formulas depends on the empirical coefficient, and it needs to be modified at high speed condition.Finally, it is recommended to optimize the thickness of stator shield sleeve, the shield sleeve material, the rotor diameter, etc.to further improve the operating efficiency of the high-speed shielded motor.

References:

[1] WILFING W G, HAHN R S, DEEKEN J.Studies on electric pump-fed liquid rocket engines for micro-launchers:SP2018-00452 [R].Seville, Spain:SP, 2018.
[2] KIMURA T, SHIMAGAKI M, SATO M, et al.Feasibility study on electric pump-fed cycle rocket engines:SP2018-00057[R].Seville, Spain:SP, 2018.
[3] 王丹, 陈宏玉, 周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进, 2018, 44(2):28-32.WANG D, CHEN H Y, ZHOU C C.System scheme and performance evaluation of an engine fed by electric pump[J].Journal of Rocket Propulsion, 2018,44(2):28-32.
[4] 王浩明, 程诚, 林庆国.液体火箭电动泵增压系统应用分析[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集.大连:中国航天第三专业信息网,2017.
[5] 季建刚, 孔繁余, 孔祥花.屏蔽泵发展综述[J].水泵技术, 2006(1):15-17, 20.
[6] MUSZYNSKI M, ALLIOT P.Progress of the in-space propulsion(ISP-1)project:AIAA 2011-5553[R].USA:AIAA, 2011.
[7] RACHOV P A P, TACCA H, LENTINI D.Electric feed systems for liquid-propellant rockets[J].Journal of Propulsion and Power, 2013, 29(5):1171-1180.
[8] 张晓晨, 李伟力, 曹君慈,等.屏蔽电机屏蔽损耗与电机性能的计算与分析[J].哈尔滨工业大学学报, 2007,39(9):1422-1426.
[9] 王利伟.高效屏蔽泵的性能研究[D].镇江:江苏大学, 2010.
[10] 周水清, 孔繁余, 高翠兰,等.永磁屏蔽泵的电磁场模拟分析[J].江苏大学学报,2012, 33(5):528-532.
[11] 何燕, 黄亚.永磁电机屏蔽泵性能优化[J].电机技术, 2016(4):5-10.
[12] 孔祥花, 孔繁余, 季建刚, 等.屏蔽泵能耗的计算与试验[J].排灌机械, 2006, 24(4):10-13.
[13] 马德鑫.论屏蔽式异步电动机的设计特点[J].电机技术, 2001(3):37-38.
[14] 马德鑫.再论屏蔽式异步电动机的设计特点[J].电机技术, 2004(3):17-20.
[15] 成德, 薛亚波, 沈洪.屏蔽式电动泵内部流场的分析与可视化[J].核科学与工程, 2013,33(4):398-403.
[16] 宋艳文, 林艳江.屏蔽电动机屏蔽套的设计特点及常见问题的预防措施[J].防爆电机, 2002, 37(1):16-18.
[17] 张亮.无刷直流屏蔽电动机的涡流损耗与性能研究[J].微电机, 2016, 49(8):16-18.
[18] 倪有源, 陈俊华, 何强.新型永磁屏蔽电机性能研究[J].微特电机, 2015, 43(5):26-29.
[19] BURKHARDT Y, HUTH G, URSCHEL S.Eddy current losses in PM canned motors[C]//The XIX International Conference on Electrical Machines.Rome, Italy:IEEE, 2010.

Memo

Memo:
-
Last Update: 2019-12-20