|Table of Contents|

Estimation method for coefficient of kerosene filling temperature rise model under small sample(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年06期
Page:
90-94
Research Field:
测控与试验
Publishing date:

Info

Title:
Estimation method for coefficient of kerosene filling temperature rise model under small sample
Author(s):
LIU Jinjie XU Qiqi FU Shanchuan DOU Tianheng
(Xichang Satellite Launch Center, Wenchang 571300, China)
Keywords:
small sample kerosene temperature coefficient estimation Bayes regression
PACS:
V511
DOI:
-
Abstract:
In order to eliminate the deviation between the actual rocket’s kerosene filling temperature and the theoretical result calculated by current filling temperature rise model, and estimate kerosene temperature for accurate injection and precise control, Bayesian regression method was proposed to estimate fluctuation coefficient of the temperature rise model based on a very few sample data at launching site.It takes the empirical parameters as the prior information to give a distribution of parameters to be estimated, and uses real data to calculate Bayesian risk.The parameters of the filling temperature rise model were optimized by minimizing the risk function.Numerical results show that, compared with the given experience parameters and least square results, the kerosene temperature calculated by Bayes regression is much closer to the actual result.With the increase of available data sample capacity, the parameter estimation accuracy of Bayesian regression tends to converge.Bayesian regression can improve the precision of filling temperature rise model efficiently, and provides a foundation to improve the accuracy of propellant filling.

References:

[1] 杨寒, 吴志坚.变频泵在地面煤油加注系统中的应用[J].火箭推进, 2015, 41(5):111-114.YANG H, WU Z J.Application of variable frequency pump in kerosene filling system on ground[J].Journal of Rocket Propulsion, 2015,41(5):111-114.
[2] 苏永芝, 李俊.常规加注虚拟仿真系统应用分析[J].北京信息科技大学学报(自然科学版), 2017, 32(3):75-79.
[3] 马原, 王磊, 孙培杰, 等.微重力环境低温流体无排气加注过程数值研究[J].低温工程, 2017(4):7-13, 20.
[4] 王正明, 易东云.测量数据建模与参数估计[M].长沙:国防科技大学出版社, 1996.
[5] 何晓群, 刘义卿.应用回归分析[M].北京:中国人民大学出版社, 2001.
[6] 朱蕾, 杨毅.改进贝叶斯算法在配网故障诊断中的研究[J].三峡大学学报(自然科学版), 2018, 40(2):72-77.
[7] 谢仕炜, 胡志坚, 吴方劼, 等.基于递推最小二乘法的多端口外网静态等值参数辨识方法[J].电力系统保护与控制, 2018, 46(3):26-34.
[8] 曹宁, 王晓锋, 徐亚栋, 等.基于逐步回归法的车载炮射击精度影响因素分析[J].南京理工大学学报, 2013, 37(4):557-560.
[9] 徐群.非线性回归分析的方法研究[D].合肥:合肥工业大学, 2009.
[10] PENG X Y, YAN Z Z.Bayesian estimation for generalized exponential distribution based on progressive type-I interval censoring[J].Acta Mathematicae Applicatae Sinica, English Series, 2013, 29(2):391-402.
[11] LIN Y J, LIO Y L.Bayesian inference under progressive type-I interval censoring[J].Journal of Applied Statistics, 2012, 39(8):1811-1824.
[12] 韦来生, 张伟平.贝叶斯分析[M].合肥:中国科学技术大学出版社, 2013.
[13] 徐芹.正态线性回归模型下Bayes估计的优良性[J].重庆工商大学学报(自然科学版), 2008, 25(4):347-349, 402.
[14] 田博, 陈舜杰, 周雯.基于最小风险贝叶斯决策理论的在线评价排名方法研究[J].上海管理科学, 2018, 40(2):91-95.
[15] 赵颖.国外新型运载火箭研制计划与发展现状[J].国际太空, 2002(10):22-27.

Memo

Memo:
-
Last Update: 2019-12-20