|Table of Contents|

Study on combustion and heat transfer characteristics of a scaled trust chamber(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年01期
Page:
28-34
Research Field:
研究与设计
Publishing date:

Info

Title:
Study on combustion and heat transfer characteristics of a scaled trust chamber
Author(s):
HAN Changlin TIAN Yuan
(Beijing Aerospace Propulsion Institute, Beijing 100076, China)
Keywords:
rocket engine thrust chamber combustion simulation heat transfer simulation CFD
PACS:
V434.13文献标识码:A 文章编号:1672-9374(2020)01-0028-07
DOI:
-
Abstract:
To study the influence of mass flow rate of propellant and the flow direction of coolant on combustion and heat transfer process of the trust chamber, the scaled thrust chamber of a certain type of hydrogen-oxygen rocket engine was taken as the research object, and its combustion and heat transfer process was simulated. When the coolant flow direction was changed, the maximum wall temperature varied by 1.04%, the maximum wall heat flux varied by 0.544%, the temperature rise of coolant varied by 0.233% and the coolant outlet pressure varied by 3.803%. The research shows that the direction of coolant flow has little effect on the combustion and heat transfer processes, and it affects the wall temperature distribution. When the mass flow rate of propellant increased by 22.29%, the chamber pressure increased by 22.17%, the combustion efficiency decreased by 0.55%, the maximum wall temperature increased by 9.16%, the maximum heat flux increased by 17.48% and the temperature rise of coolant increased by 13.05%. The improvement of propellant mass flow rate will lead to the increase of the wall temperature and coolant temperature rise. Because the combustion is not sufficient due to the small reaction space in the scaled engine, improving the coolant mass flow rate will reduce the combustion efficiency.

References:

[1] 王振国.液体火箭发动机燃烧过程建模与数值仿真[M].北京:国防工业出版社, 2012.
[2] 林庆国, 周进.小推力液体火箭发动机燃烧与传热数值仿真研究[J].国防科技大学学报, 2012, 34(4):13-17.
[3] FREY M,AICHNER T, GORGEN J,et al.Modeling of rocket combustion devices [R].AIAA 2010-4329.
[4] RICCIUS J, ZAMETAEV E.Stationary and transient thermal analyses of cryogenic liquid rocket combustion chamber walls[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Indianapolis, Indiana.Reston, Virigina:AIAA, 2002.
[5] BUCCHI A, BRUNO C, CONGIUNTI A.Transpiration cooling performance in LOX/methane liquid-fuel rocket engines[J].Journal of Spacecraft and Rockets, 2005, 42(3):476-486.
[6] WANG T S, LUONG V.Hot-gas-side and coolant-side heat transfer in liquid rocket engine combustors[J].Journal of Thermophysics and Heat Transfer, 1994, 8(3):524-530.
[7] NEGISHI H, KUMAKAWA A, YAMANISHI N, et al.Heat transfer simulations in liquid rocket engine subscale thrust Chambers[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Hartford, CT.Reston, Virigina:AIAA, 2008.
[8] KNAB O, FREY M, G?RGEN J, et al.Progress in combustion and heat transfer modelling in rocket thrust chamber applied engineering[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Denver, Colorado.Reston, Virigina:AIAA, 2009.
[9] SHARMA A,AGARWAL D K,PISHARADY J C,et al.Numerical analysis of combustion and regenerative cooling in LOX-methane rocket engine[C].Proceedings of the International Astronautical Congress.2017.
[10] 刘红珍, 田原, 孙纪国.液氧甲烷单喷嘴燃烧性能数值仿真研究[J].火箭推进, 2014, 40(1):56-59.LIU H Z, TIAN Y, SUN J G.Numerical simulation of combustion performance of LOX/methane single nozzle[J].Journal of Rocket Propulsion, 2014, 40(1):56-59.
[11] MARCHI C H, LAROCA F, DA SILVA A F C, et al.Numerical solutions of flows in rocket engines with regenerative cooling[J].Numerical Heat Transfer, Part A:Applications, 2004, 45(7):699-717.
[12] 冯文澜,张远君.液体火箭发动机原理[M].北京:北京航空航天大学出版社,1991.
[13] 姜培学, 任泽霈, 张左匆, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅰ)数理模型[J]. 推进技术, 1999, 20(3): 1-4.
[14] 姜培学, 任泽霈, 陈旭扬, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅱ)数值方法与计算结果[J]. 推进技术, 1999, 20(4): 17-21.
[15] 周立新, 张会强, 雷凡培, 等. 人为粗糙度强化传热机理数值分析[J]. 火箭推进, 2004, 30(1): 7-10.ZHOU L X, ZHANG H Q, LEI F P,et al. Numerical analysis of heat transfer enhancement for a cooling channel flow with artificial roughness[J]. Journal of Rocket Propulsion, 2004, 30(1): 7-10.
[16] 韩振兴,林文,张远君,等.液体火箭发动机铣槽推力室三维壁温分布计算[J].航空动力学报,1996,11(2):145-148.
[17] 李军伟,刘宇.三维数值模拟再生冷却喷管的换热[J].推进技术,2005,26(2):111-115.
[18] 李军伟, 刘宇.一种计算再生冷却推力室温度场的方法[J].航空动力学报, 2004, 19(4):550-556.
[19] VáZQUEZ M S, RODRíGUEZ W V, ISSA R.Effects of ridged walls on the heat transfer in a heated square duct[J].International Journal of Heat and Mass Transfer, 2005, 48(10):2050-2063.
[20] NEGISHI H, DAIMON Y, KAWASHIMA H.Flowfield and heat transfer characteristics in the LE-X expander bleed cycle combustion chamber[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cleveland, OH.Reston, Virginia:AIAA, 2014.
[21] 汪小卫, 金平, 蔡国飙.一种单喷嘴推力室燃烧内流场的方法[J].北京航空航天大学学报, 2009, 35(9):1095-1099.
[22] 任汉芬,刘国球,方照奎,等.液体火箭发动机原理[M].北京:中国宇航出版社,1993.

Memo

Memo:
-
Last Update: 2020-02-25