|Table of Contents|

Influence of outlet parameters of inducer on performance of high speed centrifugal pump(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年01期
Page:
69-75
Research Field:
研究与设计
Publishing date:

Info

Title:
Influence of outlet parameters of inducer on performance of high speed centrifugal pump
Author(s):
LI Huimin LI Xiangyang JIANG Jianyuan ZHANG Dan
(Xi’an Aerospace Propulsion Institute, Xi’an 710100,China)
Keywords:
liquid rocket engine the inducer-centrifugal pump variable-pitch inducer cavitation performance
PACS:
V434.2文献标识码:A 文章编号:1672-9374(2020)01-0069-07
DOI:
-
Abstract:
A high speed inducer-centrifugal pump of specific liquid propellant rocket engine has the problem of low cavitation performance, and the liquid propellant rocket engine has special strict requirements on the pump cavitation performance, which directly affects the performance and reliability of the engine.In order to obtain higher efficiency, the larger outlet angle of the inducer was selected according to the conventional pump design experience.However, at this point,the energy matching between inducer and centrifugal impeller was not the best, so the better cavitation performance could not be obtained.After the theoretical analysis, an improved scheme to reduce the outlet angle of the inducer was proposed, and the flow field of the inducer-centrifugal pump was simulated numerically.The simulation and test results show that the pump’s cavitaion performance is greatly improved when the outlet parameters of the inducer were adjusted according to the design method, although the pump’s head and efficiency are slightly reduced, so it is feasible to improve the pump’s cavitation performance by using the design method.

References:

[1] JAKOBSEN J K.Liquid rocket engine turbopump inducers[R].NASA SP 1971-8052.
[2] KENJIRO K,HITOSHI Y,YOSHINOBU T.Performance of LE-7 LOX pump inducer[C]// 18th International Symposium on Space Technology and Science.Tokyo,Japan:AGNE Publishing Inc.1992.
[3] BISSEL W R,DOULASS H W,SOBIN A J. Turbopump systems for liquid rocket engines[R]. NASA SP 1974-8107.
[4] ACOSTA A J,TSUJIMOTO Y,YOSHIDA Y,et al. Effects of leading edge sweep on the cavitating characteristics of inducer pumps[J]. International Journal of Rotating Machinery,2001,7(6): 397-404.
[5] BAKIR F,KOUIDRI S,NOGUERA R,et al. Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime[J]. Journal of Fluids Engineering,2003,125(2): 293-301.
[6] CERVONE A,PACE G,TORRE L,et al. Effects of the leading edge shape on the performance of an axial three bladed inducer[C]//14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery(ISROMAC14). Honolulu:HI,2012.
[7] COUTIER-DELGOSHA O,CAIGNAERT G,BOIS G,et al. Influence of the blade number on inducer cavitating behavior[J]. Journal of Fluids Engineering,2012,134(8): DOI:10.1115/1.4006693.
[8] HONG S S,KIM J S,CHOI C H,et al. Effect of tip clearance on the cavitation performance of a turbopump inducer[J]. Journal of Propulsion and Power,2006,22(1): 174-179.
[9] LAKSHMINARAYANA B. Analytical and experimental st udy of flow phenomena in noncavitating rocket pump inducers. NASA 1981-3471.
[10] 孙建, 孔繁余, 焦其斌. 变螺距诱导轮的设计步骤及参数选择[J]. 流体机械, 2006, 34(4): 19-22.
[11] 陈晖, 张恩昭, 谭永华, 等. 高速平板诱导轮的结构设计与分析[J]. 火箭推进, 2009, 35(3): 1-5.CHEN H, ZHANG E Z, TAN Y H, et al. Geometry design and analysis of the high-speed rotational plate inducer[J]. Journal of Rocket Propulsion, 2009, 35(3): 1-5.
[12] 庄宿国,刘厚林,俞志君,等.诱导轮水力设计及其CAD软件开发[J].流体机械,2011,39(7):50-54.
[13] 孔繁余,黄建军,吕毅,等.离心泵变螺距诱导轮的开发[J].排灌机械,2008,26(3):10-14.
[14] 王剑,胡敬宁,何玉杰,等. 高速离心泵诱导轮的设计[J]. 流体机械,2005,33(5):20-23.
[15] 朱祖超,王乐勤.变螺距诱导轮结构设计与理论分析[J].浙江大学学报(自然科学版),1998,32(2):196-200.
[16] MEJRI I,BAKIR F,REY R,et al.Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers[J].Journal of Fluids Engineering,2006,128(6):1308-1323.
[17] 宋沛原,李家文,唐飞.轮毂形状对诱导轮性能的影响[J].火箭推进,2012,38(2):38-43.SONG P Y,LI J W,TANG F.Effect of hub shape on performance of inducer[J].Journal of Rocket Propulsion,2012,38(2):38-43.
[18] 刘厚林,王健,王勇,等.角度变化系数对变螺距诱导轮性能的影响 [J].流体机械,2013,41(10):19-23.
[19] 王文廷,陈晖,李永鹏,等.高速离心泵诱导轮与离心轮的匹配 [J].排灌机械工程学报,2015,33(4):301-305.
[20] 潘中永,袁建平,杨敬江,等.诱导轮与泵主叶轮的匹配关系研究[J].水泵技术,2000(3):7-9,13.
[21] 叶汉玉,李家文,李欣.诱导轮旋转汽蚀数值模拟[J].火箭推进,2014,40(4):43-49.YE H Y,LI J W,LI X.Numerical simulations of rotating cavitation in inducer[J].Journal of Rocket Propulsion,2014,40(4):43-49.
[22] 李欣,肖立明,刘畅,等.变螺距诱导轮的气蚀性能研究[J].火箭推进,2017,43(2):1-8,17.LI X,XIAO L M,LIU C,et al.Study on cavitation performance of variable-pitch inducer[J].Journal of Rocket Propulsion,2017,43(2):1-8,17.
[23] 唐飞,李家文.液体火箭发动机诱导轮旋转汽蚀分析[J].推进技术,2012,33(4):639-644.
[24] 唐飞,李家文,李永,等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进,2013,39(3):44-49.TANG F,LI J W,LI Y,et al.Study on improving cavitation performance of inducer for liquid rocket engine[J].Journal of Rocket Propulsion,2013,39(3):44-49.
[25] 刘厚林,刘东喜,王勇,等.泵空化流数值计算研究现状及展望[J].流体机械,2011,39(9):38-44.
[26] 郭晓梅,朱祖超,崔宝玲,等.变螺距高速诱导轮的汽蚀特性[J].工程热物理学报,2010,31(8):1315-1318.
[27] 陈晖,李斌,张恩昭,等.液体火箭发动机高转速诱导轮旋转空化[J].推进技术,2009,30(4):390-395.

Memo

Memo:
-
Last Update: 2020-02-25