|Table of Contents|

Pitting mechanism and passivation process optimization of nitriding surface of S-03 steel(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年01期
Page:
102-108
Research Field:
工艺与材料
Publishing date:

Info

Title:
Pitting mechanism and passivation process optimization of nitriding surface of S-03 steel
Author(s):
XU Weichao WANG Ying YE Hui
(Xi’an Space Engine Company Limited, Xi’an 710100, China)
Keywords:
nitriding of S-03 steel corrosive pitting compound passivation passivation film corrosion resistance
PACS:
V463文献标识码:A 文章编号:1672-9374(2020)01-0102-07
DOI:
-
Abstract:
The mechanism of pitting corrosion on nitriding surface of S-03 steel(022Cr12Ni10MoTi)was analyzed, CrN was found on the nitriding surface which caused poor Cr.So the dense and complete passivation film did’t formed, which caused the corrosion resistance of material to decrease and prone to corrosion.The passivation process of phosphoric acid system was optimized, and then the compound passivation process was proposed.By cyclic polarization curves and electrochemical impedance spectroscopy(EIS), the corrosion behavior of compound passivated S-03 steel nitriding surface was studied, and compared with non passivation and the passivation process of phosphoric acid system.The results show that the pitting potential of S-03 steel with compound passivation treatment is the largest, and the corrosion rate is lowest, and the passivation film has the strongest repairing ability.It indicates that the compound passivation process can form a stable amorphous oxide film xCr2O3·yCrOOH which improves the pitting corrosion resistance, and its corrosion resistance is much higher than that of the passivation process of phosphoric acid system and unpassivated surface.Meanwhile the compound passivation process can effectively improve the thickness of passivation film for nitriding surface of S-03 steel and enhance the repairing ability of passivation film.

References:

[1] 杜楠,田文明,赵晴,等.304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理[J].金属学报,2012,48(7):807-814.
[2] 霍玉龙.不锈钢点蚀的电化学噪声行为研究[D].哈尔滨:哈尔滨工业大学,2013.
[3] 李元松.0Cr15Ni5Cu3Nb不锈钢在Cl-介质中的点蚀行为及防护[D].扬州:扬州大学,2013.
[4] 黄世新,杜楠,赵晴,等.Fe3+水解及其对304不锈钢点蚀行为的影响[J].腐蚀与防护,2016,37(6):453-456.
[5] 刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006.
[6] 黎雪松,龚敏,郑兴文.2205双相不锈钢在卤水溶液中腐蚀初探[J].全面腐蚀控制,2015,29(3):57-61.
[7] 黄世新.304不锈钢在蚀孔模拟溶液中的腐蚀行为研究[D].南昌:南昌航空大学,2016.
[8] 王竹.奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究[D].北京:北京科技大学,2018.
[9] 叶超.304不锈钢点蚀行为的电化学研究[D].南昌:南昌航空大学,2014.
[10] 吴浩,徐桂芳,严羽,等.新型高氮低镍奥氏体不锈钢的点蚀性能[J].金属热处理,2015,40(12):11-16.
[11] 程海英,何安平,李永虎.S-03钢渗氮层裂纹分析与控制[J].火箭推进,2012,38(3):59-64.CHENG H Y,HE A P,LI Y H.Analysis and control of crack in nitrated layer of S-03 steel[J].Journal of Rocket Propulsion,2012,38(3):59-64.
[12] 石林,郑志军,高岩.不锈钢的点蚀机理及研究方法[J].材料导报,2015,29(23):79-85.
[13] 潘莹,张三平,周建龙,等.金属材料点蚀形核过程研究进展[J].装备环境工程,2010,7(4):67-70.
[14] 王昊,林雪.不锈钢表面酸洗钝化与电抛光[J].电镀与环保,2018,38(1):46-48.
[15] 肖稳.不锈钢化学钝化及硅烷处理的耐蚀性研究[D].北京:机械科学研究总院,2017.
[16] 徐海嵩.316L不锈钢再钝化行为规律及其钝化膜稳定性研究[D].北京:北京科技大学,2016.
[17] 权琳琳,王迎.S-130不锈钢表面钝化工艺及其性能[J].火箭推进,2019,45(3):64-68.QUAN L L,WANG Y.Study on surface passivation process and properties of S-130 stainless steel[J].Journal of Rocket Propulsion,2019,45(3):64-68.
[18] 马李洋,丁毅,马立群,等.316L不锈钢柠檬酸钝化工艺及其耐点蚀性能研究[J].表面技术,2007,36(2):39-41.
[19] 张微啸,李成涛,陈建军,等.304L不锈钢在硼酸水溶液中的腐蚀行为[J].腐蚀与防护,2015,36(1):68-71.
[20] 徐一慧,孔令真,路伟,等.304不锈钢在硝酸环境中的腐蚀电化学行为[J].腐蚀与防护,2015,36(10):905-909.
[21] 胡融刚,林昌健.电化学改性不锈钢钝化膜的XPS/SERS研究[J].中国腐蚀与防护学报,2000,20(3):35-40.
[22] 詹中伟,孙志华,汤智慧.化学钝化对S280超高强度不锈钢综合性能的影响[J].腐蚀与防护,2015,36(8):742-747.

Memo

Memo:
-
Last Update: 2020-02-25