|Table of Contents|

Reliability analysis of fatigue life for rocket engine turbine blade(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年02期
Page:
57-63
Research Field:
研究与设计
Publishing date:

Info

Title:
Reliability analysis of fatigue life for rocket engine turbine blade
Author(s):
JIANG Jinpeng1 LIU Zhichao1 LIU Zhu1 GONG Fan1 WANG Jue2
(1.Science and Technology on Space Physics Laboratory, Beijing 100076, China; 2.Systems Engineering Division, China Academy of Launch Vehicle Technology, Beijing 100076, China)
Keywords:
rocket engine turbine blade fatigue life reliability sensitivity
PACS:
V434.212
DOI:
-
Abstract:
Due to the randomness of material properties, structural dimensions and working loads during the process of production and use, fatigue life usually has great dispersion.Based on Monte Carlo simulation combined with response surface method(RSM), probabilistic fatigue life and reliability analysis were conducted for some rocket engine turbine blades, considering the randomness of structural geometric parameter, material property and working load.The sensitivity of blade life to those random factors and the influence of variable dispersion on fatigue life were analyzed.The results show that the fatigue life has a skewed distribution.Turbine inlet temperature has the greatest impact on blade fatigue life, followed by low-cycle fatigue(LCF)properties.The rotating speed and thermal expansion coefficient have some effect on blade life.Controlling the variable dispersion is approved to be an effective way to increase the safe life of turbine blade.For a single variable, the effect of controlling the temperature dispersion of turbine inlet is most significant.

References:

[1] 郑雄, 杨勇, 姚世东, 等.法尔肯9可重复使用火箭发展综述[J].导弹与航天运载技术, 2016(2):39-46.
[2] 康建斌, 谢泽兵, 郑宏涛, 等.火箭子级垂直返回海上平台制导、导航和控制技术研究[J].导弹与航天运载技术, 2016(6):32-35.
[3] 孙雅平.俄罗斯研发新型可重复使用RD-191发动机[J].导弹与航天运载技术, 2008(5):13.
[4] HALE J, KLATT F.SSME improvements for routine shuttle operations[C]//21st Joint Propulsion Conference. Monterey, CA, USA.Reston, Virigina:AIAA, 1985.
[5] 杨尔辅, 张振鹏, 崔定军.液发推力室和涡轮泵故障监测与诊断技术研究[J].北京航空航天大学学报, 1999, 25(5):619-622.
[6] 侯金丽, 金平, 蔡国飙.基于模糊故障树和因子化分析的重复使用火箭发动机失效模式[J].航空动力学报, 2014, 29(4):987-992.
[7] 李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社,2006.
[8] HAUBERT R, MACLIN H, NOE M, et al.High pressure turbine blade life sensitivity[C]//16th Joint Propulsion Conference. Hartford, CT, USA.Reston, Virigina:AIAA, 1980.
[9] Probabilistic structural analysis methods(PSAM)for select space propulsion system components[R].[S.l.]:Southwest Research Institute,1999.
[10] BOYCE L.Probabilistic structural analysis methods for improving space shuttle engine reliability[J].Journal of Propulsion and Power, 1989, 5(4):426-430.
[11] NAGPAL V K, RUBINSTEIN R, CHAMIS C C.Probabilistic structural analysis to quantify uncertainties associated with turbopump blades[J].AIAA Journal, 1989, 27(6):809-813.
[12] HARLOW D G, DELPH T J.A probabilistic model for creep-fatigue failure[J].Journal of Pressure Vessel Technology, 1997, 119(1):45-51.
[13] MAO H.Reliability analysis of creep–fatigue failure[J].International Journal of Fatigue, 2000, 22(9):789-797.
[14] LIU Z M, MAVRIS D.A methodology for probabilistic creep-fatigue life assessment of hot gas path components[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Palm Springs, California.Reston, Virigina:AIAA, 2004.
[15] 胡殿印, 裴月, 王荣桥, 等.涡轮盘低循环疲劳的概率设计[J].推进技术, 2008, 29(4):481-487.
[16] 马艳红, 张大义, 洪杰, 等.气流激励下叶片的高周疲劳概率寿命预估[J].推进技术, 2009, 30(4):462-467.
[17] 高阳, 白广忱, 张瑛莉.涡轮盘低循环疲劳寿命的概率分析[J].航空动力学报, 2009, 24(4):804-809.
[18] 洪杰, 张大义, 陈璐璐.气流激励下的叶片高周疲劳寿命研究的发展[J].航空动力学报, 2009, 24(3):652-661.
[19] JIANG J P, LI J W, CAI G B, et al.Effects of axial gap on aerodynamic force and response of shrouded and unshrouded blade[J].Science China Technological Sciences, 2017, 60(4):491-500.
[20] JIANG J P, LI J W, CAI G B, et al.Effects of axial gap and nozzle distribution on aerodynamic forces of a supersonic partial-admission turbine[J].Chinese Journal of Aeronautics, 2017, 30(6):1844-1853.
[21] GAO H F, FEI C W, BAI G C, et al.Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction[J].Aerospace Science and Technology, 2016, 49:289-300.

Memo

Memo:
-
Last Update: 2020-04-25