|Table of Contents|

Analysis of casting defect mechanism and optimization of solidification temperature field(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
83-89
Research Field:
工艺与材料
Publishing date:

Info

Title:
Analysis of casting defect mechanism and optimization of solidification temperature field
Author(s):
WANG Yu WU Xiaoming REN Xinmiao GAO Huaisheng
(Xi’an Space Engine Company Limited, Xi’an 710100, China)
Keywords:
loosening defect casting process optimization solidification temperature field
PACS:
V261
DOI:
-
Abstract:
Aiming at the loosening defect of Y inlet pipe of a certain type of engine, its produce mechanism was expounded, and the visual model of alloy filling and solidification was established based on procast casting simulation software, as result it is found that unreasonable design of chilled iron is the main reson which causes such problem. By adjusting the structure and size of the chilled iron, coordinating the cooling rate of each part, optimizing the distribution of the solidification temperature field, a bottom-up solidification sequence was established to ensure the smoothness of the molten liquid feeding channel, and the alloy liquid of the original defect was replenished to eliminate looseness defect. The results of small batch production verification show that there was no loose defect in the X-ray inspection of the casting, the casting qualification was increased from 60% to 92.8%, and the manufacturing cycle was shortened form four months to one month

References:

[1] 商毅, 郭蓓. 树脂砂低压铸造工艺研究与应用[J]. 火箭推进, 2017, 43(4): 63-69.
SHANG Y, GUO B. Research and application of low-pressure casting process of resin sand[J]. Journal of Rocket Propulsion, 2017,43(4): 63-69.
[2] 刘世开, 肖王振, 张建平. 树脂砂反重力铸造航空件生产线的设计和应用[J]. 金属加工(热加工), 2015(19): 48-52.
[3] 林生军. 新型低糠醇高活性呋喃树脂及其固化剂的开发研究[D]. 武汉: 华中科技大学, 2011.
[4] 刘凤财, 荣天爱, 汤雪卫. ZL114A合金卫星接收器面罩铸件的研制[J]. 特种铸造及有色合金, 2019, 39(4): 366-370.
[5] 文波, 夏志单, 季珊林, 等. 复杂薄壁框类铝合金铸件工艺设计及数值模拟[J]. 特种铸造及有色合金, 2018, 38(7): 768-771.
[6] 王先飞, 肖旅, 邹文兵, 等. 基于ProCAST的镁合金惯组支架砂型铸造工艺研究[J]. 上海航天, 2019, 36(2): 74-77.
[7] 刘东戎, 杨智鹏, 王丽萍, 等. 铸造充型过程数值模拟技术的发展及现状评述[J]. 哈尔滨理工大学学报, 2016, 21(3): 96-100.
[8] 周建新. 铸造计算机模拟仿真技术现状及发展趋势[J]. 铸造, 2012, 61(10): 1105-1115.
[9] 王元庆, 刘静, 陈强, 等. Procast软件在大型复杂铝合金铸件上的应用[J]. 特种铸造及有色合金, 2011, 31(11): 1024-1027.
[10] 潘利文, 高永, 高文理, 等. 基于ProCAST的TiAl叶片缩孔缩松预测及工艺优化[J]. 特种铸造及有色合金, 2010, 30(6): 504-507.
[11] 李博, 胡伟叶, 沈以赴, 等. 飞机框架结构件振动疲劳失效分析[J]. 金属热处理, 2011, 36(9): 83-87.
[12] 钱怡君, 程兆虎, 于浩. 数值模拟在铸造中的应用进展[J]. 精密成形工程, 2012, 4(4): 39-43.
[13] 曹岩, 张浩, 石亚茹, 等. 基于ProCAST的薄壁叶片熔模精铸过程模拟[J]. 特种铸造及有色合金, 2018, 38(11): 1226-1229.
[14] 梁怀喜, 韩战秀, 李清. 密闭容器漏热液氢饱和过程分析[J]. 火箭推进, 2018, 44(3): 49-53.
LIANG H X, HAN Z X, LI Q. Analysison saturation process of liquid hydrogen with heat leakage in closed container[J]. Journal of Rocket Propulsion, 2018, 44(3): 49-53.
[15] 韩志强, 李金玺, 杨文, 等. 铝合金挤压铸造过程微观孔洞形成的建模与仿真[J]. 金属学报, 2011, 47(1): 7-16.
[16] 隋大山. 铸造凝固过程热传导反问题参数辨识技术研究[D]. 上海: 上海交通大学, 2008.
[17] 竹励萍. 金属型铸造凝固过程铸件/铸型界面换热系数的研究[D]. 天津: 天津理工大学, 2009.
[18] 杨晨, GROSS U. 基于热传导逆问题方法预测材料热物性参数[J]. 化工学报, 2005, 56(12): 2415-2420.
[19]王永明. 叶片熔模精铸虚拟仿真与快速成型技术研究[D]. 西安: 西安工业大学, 2018.

Memo

Memo:
-
Last Update: 2020-06-25